AAAI.2018 - AI and the Web

Total: 43

#1 RSDNE: Exploring Relaxed Similarity and Dissimilarity from Completely-Imbalanced Labels for Network Embedding [PDF] [Copy] [Kimi]

Authors: Zheng Wang ; Xiaojun Ye ; Chaokun Wang ; Yuexin Wu ; Changping Wang ; Kaiwen Liang

Network embedding, aiming to project a network into a low-dimensional space, is increasingly becoming a focus of network research. Semi-supervised network embedding takes advantage of labeled data, and has shown promising performance. However, existing semi-supervised methods would get unappealing results in the completely-imbalanced label setting where some classes have no labeled nodes at all. To alleviate this, we propose a novel semi-supervised network embedding method, termed Relaxed Similarity and Dissimilarity Network Embedding (RSDNE). Specifically, to benefit from the completely-imbalanced labels, RSDNE guarantees both intra-class similarity and inter-class dissimilarity in an approximate way. Experimental results on several real-world datasets demonstrate the superiority of the proposed method.

#2 Telepath: Understanding Users from a Human Vision Perspective in Large-Scale Recommender Systems [PDF] [Copy] [Kimi]

Authors: Yu Wang ; Jixing Xu ; Aohan Wu ; Mantian Li ; Yang He ; Jinghe Hu ; Weipeng Yan

Designing an e-commerce recommender system that serves hundreds of millions of active users is a daunting challenge. To our best knowledge, the complex brain activity mechanism behind human shopping activities is never considered in existing recommender systems. From a human vision perspective, we found two key factors that affect users’ behaviors: items’ attractiveness and their matching degrees with users’ interests. This paper proposes Telepath, a vision-based bionic recommender system model, which simulates human brain activities in decision making of shopping, thus understanding users from such perspective. The core of Telepath is a complex deep neural network with multiple subnetworks. In practice, the Telepath model has been launched to JD’s recommender system and advertising system and outperformed the former state-of-the-art method. For one of the major item recommendation blocks on the JD app, click-through rate (CTR), gross merchandise value (GMV) and orders have been increased 1.59%, 8.16% and 8.71% respectively by Telepath. For several major ad publishers of JD demand-side platform, CTR, GMV and return on investment have been increased 6.58%, 61.72% and 65.57% respectively by the first launch of Telepath, and further increased 2.95%, 41.75% and 41.37% respectively by the second launch.

#3 Privacy Preserving Point-of-Interest Recommendation Using Decentralized Matrix Factorization [PDF] [Copy] [Kimi]

Authors: Chaochao Chen ; Ziqi Liu ; Peilin Zhao ; Jun Zhou ; Xiaolong Li

Points of interest (POI) recommendation has been drawn much attention recently due to the increasing popularity of location-based networks, e.g., Foursquare and Yelp. Among the existing approaches to POI recommendation, Matrix Factorization (MF) based techniques have proven to be effective. However, existing MF approaches suffer from two major problems: (1) Expensive computations and storages due to the centralized model training mechanism: the centralized learners have to maintain the whole user-item rating matrix, and potentially huge low rank matrices. (2) Privacy issues: the users' preferences are at risk of leaking to malicious attackers via the centralized learner. To solve these, we present a Decentralized MF (DMF) framework for POI recommendation. Specifically, instead of maintaining all the low rank matrices and sensitive rating data for training, we propose a random walk based decentralized training technique to train MF models on each user's end, e.g., cell phone and Pad. By doing so, the ratings of each user are still kept on one's own hand, and moreover, decentralized learning can be taken as distributed learning with multi-learners (users), and thus alleviates the computation and storage issue. Experimental results on two real-world datasets demonstrate that, comparing with the classic and state-of-the-art latent factor models, DMF significantly improvements the recommendation performance in terms of precision and recall.

#4 Social Recommendation with an Essential Preference Space [PDF] [Copy] [Kimi]

Authors: Chun-Yi Liu ; Chuan Zhou ; Jia Wu ; Yue Hu ; Li Guo

Social recommendation, which aims to exploit social information to improve the quality of a recommender system, has attracted an increasing amount of attention in recent years. A large portion of existing social recommendation models are based on the tractable assumption that users consider the same factors to make decisions in both recommender systems and social networks. However, this assumption is not in concert with real-world situations, since users usually show different preferences in different scenarios. In this paper, we investigate how to exploit the differences between user preference in recommender systems and that in social networks, with the aim to further improve the social recommendation. In particular, we assume that the user preferences in different scenarios are results of different linear combinations from a more underlying user preference space. Based on this assumption, we propose a novel social recommendation framework, called social recommendation with an essential preferences space (SREPS), which simultaneously models the structural information in the social network, the rating and the consumption information in the recommender system under the capture of essential preference space. Experimental results on four real-world datasets demonstrate the superiority of the proposed SREPS model compared with seven state-of-the-art social recommendation methods.

#5 On Validation and Predictability of Digital Badges’ Influence on Individual Users [PDF] [Copy] [Kimi]

Authors: Tomasz Kuśmierczyk ; Kjetil Nørvåg

Badges are a common, and sometimes the only, method of incentivizing users to perform certain actions on on- line sites. However, due to many competing factors influencing user temporal dynamics, it is difficult to determine whether the badge had (or will have) the intended effect or not. In this paper, we introduce two complementary approaches for determining badge influence on users. In the first one, we cluster users’ temporal traces (represented with Poisson processes) and apply covariates (user features) to regularize results. In the second approach, we first classify users’ temporal traces with a novel statistical framework, and then we refine the classification results with a semi-supervised clustering of covariates. Outcomes obtained from an evaluation on synthetic datasets and experiments on two badges from a pop- ular Q&A platform confirm that it is possible to validate, characterize and to some extent predict users affected by the badge.

#6 Multi-Facet Network Embedding: Beyond the General Solution of Detection and Representation [PDF] [Copy] [Kimi]

Authors: Liang Yang ; Yuanfang Guo ; Xiaochun Cao

In network analysis, community detection and network embedding are two important topics. Community detection tends to obtain the most noticeable partition, while network embedding aims at seeking node representations which contains as many diverse properties as possible. We observe that the current community detection and network embedding problems are being resolved by a general solution, i.e., "maximizing the consistency between similar nodes while maximizing the distance between the dissimilar nodes." This general solution only exploits the most noticeable structure (facet) of the network, which effectively satisfies the demands of the community detection. Unfortunately, most of the specific embedding algorithms, which are developed from the general solution, cannot achieve the goal of network embedding by exploring only one facet of the network. To improve the general solution for better modeling the real network, we propose a novel network embedding method, Multi-facet Network Embedding (MNE), to capture the multiple facets of the network. MNE learns multiple embeddings simultaneously, with the Hilbert Schmidt Independence Criterion (HSIC) being the a diversity constraint. To efficiently solve the optimization problem, we propose a Binary HSIC with linear complexity and solve the MNE objective function by adopting the Augmented Lagrange Multiplier (ALM) method. The overall complexity is linear with the scale of the network. Extensive results demonstrate that MNE gives efficient performances and outperforms the state-of-the-art network embedding methods.

#7 Joint Training for Neural Machine Translation Models with Monolingual Data [PDF] [Copy] [Kimi]

Authors: Zhirui Zhang ; Shujie Liu ; Mu Li ; Ming Zhou ; Enhong Chen

Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data.In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.

#8 Dual Deep Neural Networks Cross-Modal Hashing [PDF] [Copy] [Kimi]

Authors: Zhen-Duo Chen ; Wan-Jin Yu ; Chuan-Xiang Li ; Liqiang Nie ; Xin-Shun Xu

Recently, deep hashing methods have attracted much attention in multimedia retrieval task. Some of them can even perform cross-modal retrieval. However, almost all existing deep cross-modal hashing methods are pairwise optimizing methods, which means that they become time-consuming if they are extended to large scale datasets. In this paper, we propose a novel tri-stage deep cross-modal hashing method – Dual Deep Neural Networks Cross-Modal Hashing, i.e., DDCMH, which employs two deep networks to generate hash codes for different modalities. Specifically, in Stage 1, it leverages a single-modal hashing method to generate the initial binary codes of textual modality of training samples; in Stage 2, these binary codes are treated as supervised information to train an image network, which maps visual modality to a binary representation; in Stage 3, the visual modality codes are reconstructed according to a reconstruction procedure, and used as supervised information to train a text network, which generates the binary codes for textual modality. By doing this, DDCMH can make full use of inter-modal information to obtain high quality binary codes, and avoid the problem of pairwise optimization by optimizing different modalities independently. The proposed method can be treated as a framework which can extend any single-modal hashing method to perform cross-modal search task. DDCMH is tested on several benchmark datasets. The results demonstrate that it outperforms both deep and shallow state-of-the-art hashing methods.

#9 Improved English to Russian Translation by Neural Suffix Prediction [PDF] [Copy] [Kimi]

Authors: Kai Song ; Yue Zhang ; Min Zhang ; Weihua Luo

Neural machine translation (NMT) suffers a performance deficiency when a limited vocabulary fails to cover the source or target side adequately, which happens frequently when dealing with morphologically rich languages. To address this problem, previous work focused on adjusting translation granularity or expanding the vocabulary size. However, morphological information is relatively under-considered in NMT architectures, which may further improve translation quality. We propose a novel method, which can not only reduce data sparsity but also model morphology through a simple but effective mechanism. By predicting the stem and suffix separately during decoding, our system achieves an improvement of up to 1.98 BLEU compared with previous work on English to Russian translation. Our method is orthogonal to different NMT architectures and stably gains improvements on various domains.

#10 Confidence-Aware Matrix Factorization for Recommender Systems [PDF] [Copy] [Kimi]

Authors: Chao Wang ; Qi Liu ; Runze Wu ; Enhong Chen ; Chuanren Liu ; Xunpeng Huang ; Zhenya Huang

Collaborative filtering (CF), particularly matrix factorization (MF) based methods, have been widely used in recommender systems. The literature has reported that matrix factorization methods often produce superior accuracy of rating prediction in recommender systems. However, existing matrix factorization methods rarely consider confidence of the rating prediction and thus cannot support advanced recommendation tasks. In this paper, we propose a Confidence-aware Matrix Factorization (CMF) framework to simultaneously optimize the accuracy of rating prediction and measure the prediction confidence in the model. Specifically, we introduce variance parameters for both users and items in the matrix factorization process. Then, prediction interval can be computed to measure confidence for each predicted rating. These confidence quantities can be used to enhance the quality of recommendation results based on Confidence-aware Ranking (CR). We also develop two effective implementations of our framework to compute the confidence-aware matrix factorization for large-scale data. Finally, extensive experiments on three real-world datasets demonstrate the effectiveness of our framework from multiple perspectives.

#11 Cross-Lingual Entity Linking for Web Tables [PDF] [Copy] [Kimi]

Authors: Xusheng Luo ; Kangqi Luo ; Xianyang Chen ; Kenny Zhu

This paper studies the problem of linking string mentions from web tables in one language to the corresponding named entities in a knowledge base written in another language, which we call the cross-lingual table linking task. We present a joint statistical model to simultaneously link all mentions that appear in one table. The framework is based on neural networks, aiming to bridge the language gap by vector space transformation and a coherence feature that captures the correlations between entities in one table. Experimental results report that our approach improves the accuracy of cross-lingual table linking by a relative gain of 12.1%. Detailed analysis of our approach also shows a positive and important gain brought by the joint framework and coherence feature.

#12 Exploring Implicit Feedback for Open Domain Conversation Generation [PDF] [Copy] [Kimi]

Authors: Wei-Nan Zhang ; Lingzhi Li ; Dongyan Cao ; Ting Liu

User feedback can be an effective indicator to the success of the human-robot conversation. However, to avoid to interrupt the online real-time conversation process, explicit feedback is usually gained at the end of a conversation. Alternatively, users' responses usually contain their implicit feedback, such as stance, sentiment, emotion, etc., towards the conversation content or the interlocutors. Therefore, exploring the implicit feedback is a natural way to optimize the conversation generation process. In this paper, we propose a novel reward function which explores the implicit feedback to optimize the future reward of a reinforcement learning based neural conversation model. A simulation strategy is applied to explore the state-action space in training and test. Experimental results show that the proposed approach outperforms the Seq2Seq model and the state-of-the-art reinforcement learning model for conversation generation on automatic and human evaluations on the OpenSubtitles and Twitter datasets.

#13 Attention-via-Attention Neural Machine Translation [PDF] [Copy] [Kimi]

Authors: Shenjian Zhao ; Zhihua Zhang

Since many languages originated from a common ancestral language and influence each other, there would inevitably exist similarities between these languages such as lexical similarity and named entity similarity. In this paper, we leverage these similarities to improve the translation performance in neural machine translation. Specifically, we introduce an attention-via-attention mechanism that allows the information of source-side characters flowing to the target side directly. With this mechanism, the target-side characters will be generated based on the representation of source-side characters when the words are similar. For instance, our proposed neural machine translation system learns to transfer the character-level information of the English word "system" through the attention-via-attention mechanism to generate the Czech word "systém." Consequently, our approach is able to not only achieve a competitive translation performance, but also reduce the model size significantly.

#14 Discovering and Distinguishing Multiple Visual Senses for Polysemous Words [PDF] [Copy] [Kimi]

Authors: Yazhou Yao ; Jian Zhang ; Fumin Shen ; Wankou Yang ; Pu Huang ; Zhenmin Tang

To reduce the dependence on labeled data, there have been increasing research efforts on learning visual classifiers by exploiting web images. One issue that limits their performance is the problem of polysemy. To solve this problem, in this work, we present a novel framework that solves the problem of polysemy by allowing sense-specific diversity in search results. Specifically, we first discover a list of possible semantic senses to retrieve sense-specific images. Then we merge visual similar semantic senses and prune noises by using the retrieved images. Finally, we train a visual classifier for each selected semantic sense and use the learned sense-specific classifiers to distinguish multiple visual senses. Extensive experiments on classifying images into sense-specific categories and re-ranking search results demonstrate the superiority of our proposed approach.

#15 Representation Learning for Scale-Free Networks [PDF] [Copy] [Kimi]

Authors: Rui Feng ; Yang Yang ; Wenjie Hu ; Fei Wu ; Yueting Zhang

Network embedding aims to learn the low-dimensional representations of vertexes in a network, while structure and inherent properties of the network is preserved. Existing network embedding works primarily focus on preserving the microscopic structure, such as the first- and second-order proximity of vertexes, while the macroscopic scale-free property is largely ignored. Scale-free property depicts the fact that vertex degrees follow a heavy-tailed distribution (i.e., only a few vertexes have high degrees) and is a critical property of real-world networks, such as social networks. In this paper, we study the problem of learning representations for scale-free networks. We first theoretically analyze the difficulty of embedding and reconstructing a scale-free network in the Euclidean space, by converting our problem to the sphere packing problem. Then, we propose the "degree penalty" principle for designing scale-free property preserving network embedding algorithm: punishing the proximity between high-degree vertexes. We introduce two implementations of our principle by utilizing the spectral techniques and a skip-gram model respectively. Extensive experiments on six datasets show that our algorithms are able to not only reconstruct heavy-tailed distributed degree distribution, but also outperform state-of-the-art embedding models in various network mining tasks, such as vertex classification and link prediction.

#16 Dynamic Network Embedding by Modeling Triadic Closure Process [PDF] [Copy] [Kimi]

Authors: Lekui Zhou ; Yang Yang ; Xiang Ren ; Fei Wu ; Yueting Zhuang

Network embedding, which aims to learn the low-dimensional representations of vertices, is an important task and has attracted considerable research efforts recently. In real world, networks, like social network and biological networks, are dynamic and evolving over time. However, almost all the existing network embedding methods focus on static networks while ignore network dynamics. In this paper, we present a novel representation learning approach, DynamicTriad, to preserve both structural information and evolution patterns of a given network. The general idea of our approach is to impose triad, which is a group of three vertices and is one of the basic units of networks. In particular, we model how a closed triad, which consists of three vertices connected with each other, develops from an open triad that has two of three vertices not connected with each other. This triadic closure process is a fundamental mechanism in the formation and evolution of networks, thereby makes our model being able to capture the network dynamics and to learn representation vectors for each vertex at different time steps. Experimental results on three real-world networks demonstrate that, compared with several state-of-the-art techniques, DynamicTriad achieves substantial gains in several application scenarios. For example, our approach can effectively be applied and help to identify telephone frauds in a mobile network, and to predict whether a user will repay her loans or not in a loan network.

#17 From Common to Special: When Multi-Attribute Learning Meets Personalized Opinions [PDF] [Copy] [Kimi]

Authors: Zhiyong Yang ; Qianqian Xu ; Xiaochun Cao ; Qingming Huang

Visual attributes, which refer to human-labeled semantic annotations, have gained increasing popularity in a wide range of real world applications. Generally, the existing attribute learning methods fall into two categories: one focuses on learning user-specific labels separately for different attributes, while the other one focuses on learning crowd-sourced global labels jointly for multiple attributes. However, both categories ignore the joint effect of the two mentioned factors: the personal diversity with respect to the global consensus; and the intrinsic correlation among multiple attributes. To overcome this challenge, we propose a novel model to learn user-specific predictors across multiple attributes. In our proposed model, the diversity of personalized opinions and the intrinsic relationship among multiple attributes are unified in a common-to-special manner. To this end, we adopt a three-component decomposition. Specifically, our model integrates a common cognition factor, an attribute-specific bias factor and a user-specific bias factor. Meanwhile Lasso and group Lasso penalties are adopted to leverage efficient feature selection. Furthermore, theoretical analysis is conducted to show that our proposed method could reach reasonable performance. Eventually, the empirical study carried out in this paper demonstrates the effectiveness of our proposed method.

#18 Personalized Time-Aware Tag Recommendation [PDF] [Copy] [Kimi]

Authors: Keqiang Wang ; Yuanyuan Jin ; Haofen Wang ; Hongwei Peng ; Xiaoling Wang

Personalized tag recommender systems suggest a list of tags to a user when he or she wants to annotate an item. They utilize users’ preferences and the features of items. Tensorfactorization techniques have been widely used in tag recommendation. Given the user-item pair, although the classic PITF (Pairwise Interaction Tensor Factorization) explicitly models the pairwise interactions among users, items and tags, it overlooks users’ short-term interests and suffers from data sparsity. On the other hand, given the user-item-time triple, time-aware approaches like BLL (Base-Level Learning) utilize the time effect to capture the temporal dynamics and the most popular tags on items to handle cold start situation of new users. However, it works only on individual level and the target resource level, which cannot find users’ potential interests. In this paper, we propose an unified tag recommendation approach by considering both time awareness and personalization aspects, which extends PITF by adding weightsto user-tag interaction and item-tag interaction respectively. Compared to PITF, our proposed model can depict temporal factor by temporal weights and relieve data sparsity problem by referencing the most popular tags on items. Further, our model brings collaborative filtering (CF) to time-aware models, which can mine information from global data and help improving the ability of recommending new tags. Different from the power-form functions used in the existing time aware recommendation models, we use the Hawkes process with the exponential intensity function to improve the model’s efficiency. The experimental results show that our proposed model outperforms the state of the art tag recommendation methods in accuracy and has better ability to recommend new tags.

#19 Neural Link Prediction over Aligned Networks [PDF] [Copy] [Kimi]

Authors: Xuezhi Cao ; Haokun Chen ; Xuejian Wang ; Weinan Zhang ; Yong Yu

Link prediction is a fundamental problem with a wide range of applications in various domains, which predicts the links that are not yet observed or the links that may appear in the future. Most existing works in this field only focus on modeling a single network, while real-world networks are actually aligned with each other. Network alignments contain valuable additional information for understanding the networks, and provide a new direction for addressing data insufficiency and alleviating cold start problem. However, there are rare works leveraging network alignments for better link prediction. Besides, neural network is widely employed in various domains while its capability of capturing high-level patterns and correlations for link prediction problem has not been adequately researched yet. Hence, in this paper we target atlink prediction over aligned networks using neural networks. The major challenge is the heterogeneousness of the considered networks, as the networks may have different characteristics, link purposes, etc. To overcome this, we propose a novel multi-neural-network framework MNN, where we have one individual neural network for each heterogeneous target or feature while the vertex representations are shared. We further discuss training methods for the multi-neural-network framework. Extensive experiments demonstrate that MNN outperforms the state-of-the-art methods and achieves 3% to 5% relative improvement of AUC score across different settings, particularly over 8% for cold start scenarios.

#20 Location-Sensitive User Profiling Using Crowdsourced Labels [PDF] [Copy] [Kimi]

Authors: Wei Niu ; James Caverlee ; Haokai Lu

In this paper, we investigate the impact of spatial variation on the construction of location-sensitive user profiles. We demonstrate evidence of spatial variation over a collection of Twitter Lists, wherein we find that crowdsourced labels are constrained by distance. For example, that energy in San Francisco is more associated with the green movement, whereas in Houston it is more associated with oil and gas. We propose a three-step framework for location-sensitive user profiling: first, it constructs a crowdsourced label similarity graph, where each labeler and labelee are annotated with a geographic coordinate; second, it transforms this similarity graph into a directed weighted tree that imposes a hierarchical structure over these labels; third, it embeds this location-sensitive folksonomy into a user profile ranking algorithm that outputs a ranked list of candidate labels for a partially observed user profile. Through extensive experiments over a Twitter list dataset, we demonstrate the effectiveness of this location-sensitive user profiling.

#21 FILE: A Novel Framework for Predicting Social Status in Signed Networks [PDF] [Copy] [Kimi]

Authors: Xiaoming Li ; Hui Fang ; Jie Zhang

Link prediction in signed social networks is challenging because of the existence and imbalance of the three kinds of social status (positive, negative and no-relation). Furthermore, there are a variety types of no-relation status in reality, e.g., strangers and frenemies, which cannot be well distinguished from the other linked status by existing approaches. In this paper, we propose a novel Framework of Integrating both Latent and Explicit features (FILE), to better deal with the no-relation status and improve the overall link prediction performance in signed networks. In particular, we design two latent features from latent space and two explicit features by extending social theories, and learn these features for each user via matrix factorization with a specially designed ranking-oriented loss function. Experimental results demonstrate the superior of our approach over state-of-the-art methods.

#22 Unsupervised Generative Adversarial Cross-Modal Hashing [PDF] [Copy] [Kimi]

Authors: Jian Zhang ; Yuxin Peng ; Mingkuan Yuan

Cross-modal hashing aims to map heterogeneous multimedia data into a common Hamming space, which can realize fast and flexible retrieval across different modalities. Unsupervised cross-modal hashing is more flexible and applicable than supervised methods, since no intensive labeling work is involved. However, existing unsupervised methods learn hashing functions by preserving inter and intra correlations, while ignoring the underlying manifold structure across different modalities, which is extremely helpful to capture meaningful nearest neighbors of different modalities for cross-modal retrieval. To address the above problem, in this paper we propose an Unsupervised Generative Adversarial Cross-modal Hashing approach (UGACH), which makes full use of GAN's ability for unsupervised representation learning to exploit the underlying manifold structure of cross-modal data. The main contributions can be summarized as follows: (1) We propose a generative adversarial network to model cross-modal hashing in an unsupervised fashion. In the proposed UGACH, given a data of one modality, the generative model tries to fit the distribution over the manifold structure, and select informative data of another modality to challenge the discriminative model. The discriminative model learns to distinguish the generated data and the true positive data sampled from correlation graph to achieve better retrieval accuracy. These two models are trained in an adversarial way to improve each other and promote hashing function learning. (2) We propose a correlation graph based approach to capture the underlying manifold structure across different modalities, so that data of different modalities but within the same manifold can have smaller Hamming distance and promote retrieval accuracy. Extensive experiments compared with 6 state-of-the-art methods on 2 widely-used datasets verify the effectiveness of our proposed approach.

#23 A Multi-Task Learning Approach for Improving Product Title Compression with User Search Log Data [PDF] [Copy] [Kimi]

Authors: Jingang Wang ; Junfeng Tian ; Long Qiu ; Sheng Li ; Jun Lang ; Luo Si ; Man Lan

It is a challenging and practical research problem to obtain effective compression of lengthy product titles for E-commerce. This is particularly important as more and more users browse mobile E-commerce apps and more merchants make the original product titles redundant and lengthy for Search Engine Optimization. Traditional text summarization approaches often require a large amount of preprocessing costs and do not capture the important issue of conversion rate in E-commerce. This paper proposes a novel multi-task learning approach for improving product title compression with user search log data. In particular, a pointer network-based sequence-to-sequence approach is utilized for title compression with an attentive mechanism as an extractive method and an attentive encoder-decoder approach is utilized for generating user search queries. The encoding parameters (i.e., semantic embedding of original titles) are shared among the two tasks and the attention distributions are jointly optimized. An extensive set of experiments with both human annotated data and online deployment demonstrate the advantage of the proposed research for both compression qualities and online business values.

#24 Towards Efficient Detection of Overlapping Communities in Massive Networks [PDF] [Copy] [Kimi]

Authors: Bing-Jie Sun ; Huawei Shen ; Jinhua Gao ; Wentao Ouyang ; Xueqi Cheng

Community detection is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, few methods could be used as off-the-shelf tools to detect communities in real world networks for two reasons. On the one hand, most existing methods for community detection cannot handle massive networks that contain millions or even hundreds of millions of nodes. On the other hand, communities in real world networks are generally highly overlapped, requiring that community detection method could capture the mixed community membership. In this paper, we aim to offer an off-the-shelf method to detect overlapping communities in massive real world networks. For this purpose, we take the widely-used Poisson model for overlapping community detection as starting point and design two speedup strategies to achieve high efficiency. Extensive tests on synthetic and large scale real networks demonstrate that the proposed strategies speedup the community detection method based on Poisson model by 1 to 2 orders of magnitudes, while achieving comparable accuracy at community detection.

#25 Structural Deep Embedding for Hyper-Networks [PDF] [Copy] [Kimi]

Authors: Ke Tu ; Peng Cui ; Xiao Wang ; Fei Wang ; Wenwu Zhu

Network embedding has recently attracted lots of attentions in data mining. Existing network embedding methods mainly focus on networks with pairwise relationships. In real world, however, the relationships among data points could go beyond pairwise, i.e., three or more objects are involved in each relationship represented by a hyperedge, thus forming hyper-networks. These hyper-networks pose great challenges to existing network embedding methods when the hyperedges are indecomposable, that is to say, any subset of nodes in a hyperedge cannot form another hyperedge. These indecomposable hyperedges are especially common in heterogeneous networks. In this paper, we propose a novel Deep Hyper-Network Embedding (DHNE) model to embed hyper-networks with indecomposable hyperedges. More specifically, we theoretically prove that any linear similarity metric in embedding space commonly used in existing methods cannot maintain the indecomposibility property in hyper-networks, and thus propose a new deep model to realize a non-linear tuplewise similarity function while preserving both local and global proximities in the formed embedding space. We conduct extensive experiments on four different types of hyper-networks, including a GPS network, an online social network, a drug network and a semantic network. The empirical results demonstrate that our method can significantly and consistently outperform the state-of-the-art algorithms.