AAAI.2020 - Cognitive Modeling

| Total: 7

#1 Theory-Based Causal Transfer:Integrating Instance-Level Induction and Abstract-Level Structure Learning [PDF] [Copy] [Kimi] [REL]

Authors: Mark Edmonds, Xiaojian Ma, Siyuan Qi, Yixin Zhu, Hongjing Lu, Song-Chun Zhu

Learning transferable knowledge across similar but different settings is a fundamental component of generalized intelligence. In this paper, we approach the transfer learning challenge from a causal theory perspective. Our agent is endowed with two basic yet general theories for transfer learning: (i) a task shares a common abstract structure that is invariant across domains, and (ii) the behavior of specific features of the environment remain constant across domains. We adopt a Bayesian perspective of causal theory induction and use these theories to transfer knowledge between environments. Given these general theories, the goal is to train an agent by interactively exploring the problem space to (i) discover, form, and transfer useful abstract and structural knowledge, and (ii) induce useful knowledge from the instance-level attributes observed in the environment. A hierarchy of Bayesian structures is used to model abstract-level structural causal knowledge, and an instance-level associative learning scheme learns which specific objects can be used to induce state changes through interaction. This model-learning scheme is then integrated with a model-based planner to achieve a task in the OpenLock environment, a virtual “escape room” with a complex hierarchy that requires agents to reason about an abstract, generalized causal structure. We compare performances against a set of predominate model-free reinforcement learning (RL) algorithms. RL agents showed poor ability transferring learned knowledge across different trials. Whereas the proposed model revealed similar performance trends as human learners, and more importantly, demonstrated transfer behavior across trials and learning situations.1


#2 Deep Spiking Delayed Feedback Reservoirs and Its Application in Spectrum Sensing of MIMO-OFDM Dynamic Spectrum Sharing [PDF] [Copy] [Kimi] [REL]

Authors: Kian Hamedani, Lingjia Liu, Shiya Liu, Haibo He, Yang Yi

In this paper, we introduce a deep spiking delayed feedback reservoir (DFR) model to combine DFR with spiking neuros: DFRs are a new type of recurrent neural networks (RNNs) that are able to capture the temporal correlations in time series while spiking neurons are energy-efficient and biologically plausible neurons models. The introduced deep spiking DFR model is energy-efficient and has the capability of analyzing time series signals. The corresponding field programmable gate arrays (FPGA)-based hardware implementation of such deep spiking DFR model is introduced and the underlying energy-efficiency and recourse utilization are evaluated. Various spike encoding schemes are explored and the optimal spike encoding scheme to analyze the time series has been identified. To be specific, we evaluate the performance of the introduced model using the spectrum occupancy time series data in MIMO-OFDM based cognitive radio (CR) in dynamic spectrum sharing (DSS) networks. In a MIMO-OFDM DSS system, available spectrum is very scarce and efficient utilization of spectrum is very essential. To improve the spectrum efficiency, the first step is to identify the frequency bands that are not utilized by the existing users so that a secondary user (SU) can use them for transmission. Due to the channel correlation as well as users' activities, there is a significant temporal correlation in the spectrum occupancy behavior of the frequency bands in different time slots. The introduced deep spiking DFR model is used to capture the temporal correlation of the spectrum occupancy time series and predict the idle/busy subcarriers in future time slots for potential spectrum access. Evaluation results suggest that our introduced model achieves higher area under curve (AUC) in the receiver operating characteristic (ROC) curve compared with the traditional energy detection-based strategies and the learning-based support vector machines (SVMs).


#3 People Do Not Just Plan,They Plan to Plan [PDF] [Copy] [Kimi1] [REL]

Authors: Mark Ho, David Abel, Jonathan Cohen, Michael Littman, Thomas Griffiths

Planning is useful. It lets people take actions that have desirable long-term consequences. But, planning is hard. It requires thinking about consequences, which consumes limited computational and cognitive resources. Thus, people should plan their actions, but they should also be smart about how they deploy resources used for planning their actions. Put another way, people should also “plan their plans”. Here, we formulate this aspect of planning as a meta-reasoning problem and formalize it in terms of a recursive Bellman objective that incorporates both task rewards and information-theoretic planning costs. Our account makes quantitative predictions about how people should plan and meta-plan as a function of the overall structure of a task, which we test in two experiments with human participants. We find that people's reaction times reflect a planned use of information processing, consistent with our account. This formulation of planning to plan provides new insight into the function of hierarchical planning, state abstraction, and cognitive control in both humans and machines.


#4 Effective AER Object Classification Using Segmented Probability-Maximization Learning in Spiking Neural Networks [PDF] [Copy] [Kimi] [REL]

Authors: Qianhui Liu, Haibo Ruan, Dong Xing, Huajin Tang, Gang Pan

Address event representation (AER) cameras have recently attracted more attention due to the advantages of high temporal resolution and low power consumption, compared with traditional frame-based cameras. Since AER cameras record the visual input as asynchronous discrete events, they are inherently suitable to coordinate with the spiking neural network (SNN), which is biologically plausible and energy-efficient on neuromorphic hardware. However, using SNN to perform the AER object classification is still challenging, due to the lack of effective learning algorithms for this new representation. To tackle this issue, we propose an AER object classification model using a novel segmented probability-maximization (SPA) learning algorithm. Technically, 1) the SPA learning algorithm iteratively maximizes the probability of the classes that samples belong to, in order to improve the reliability of neuron responses and effectiveness of learning; 2) a peak detection (PD) mechanism is introduced in SPA to locate informative time points segment by segment, based on which information within the whole event stream can be fully utilized by the learning. Extensive experimental results show that, compared to state-of-the-art methods, not only our model is more effective, but also it requires less information to reach a certain level of accuracy.


#5 Biologically Plausible Sequence Learning with Spiking Neural Networks [PDF] [Copy] [Kimi] [REL]

Authors: Zuozhu Liu, Thiparat Chotibut, Christopher Hillar, Shaowei Lin

Motivated by the celebrated discrete-time model of nervous activity outlined by McCulloch and Pitts in 1943, we propose a novel continuous-time model, the McCulloch-Pitts network (MPN), for sequence learning in spiking neural networks. Our model has a local learning rule, such that the synaptic weight updates depend only on the information directly accessible by the synapse. By exploiting asymmetry in the connections between binary neurons, we show that MPN can be trained to robustly memorize multiple spatiotemporal patterns of binary vectors, generalizing the ability of the symmetric Hopfield network to memorize static spatial patterns. In addition, we demonstrate that the model can efficiently learn sequences of binary pictures as well as generative models for experimental neural spike-train data. Our learning rule is consistent with spike-timing-dependent plasticity (STDP), thus providing a theoretical ground for the systematic design of biologically inspired networks with large and robust long-range sequence storage capacity.


#6 Transfer Reinforcement Learning Using Output-Gated Working Memory [PDF] [Copy] [Kimi] [REL]

Authors: Arthur Williams, Joshua Phillips

Transfer learning allows for knowledge to generalize across tasks, resulting in increased learning speed and/or performance. These tasks must have commonalities that allow for knowledge to be transferred. The main goal of transfer learning in the reinforcement learning domain is to train and learn on one or more source tasks in order to learn a target task that exhibits better performance than if transfer was not used (Taylor and Stone 2009). Furthermore, the use of output-gated neural network models of working memory has been shown to increase generalization for supervised learning tasks (Kriete and Noelle 2011; Kriete et al. 2013). We propose that working memory-based generalization plays a significant role in a model's ability to transfer knowledge successfully across tasks. Thus, we extended the Holographic Working Memory Toolkit (HWMtk) (Dubois and Phillips 2017; Phillips and Noelle 2005) to utilize the generalization benefits of output gating within a working memory system. Finally, the model's utility was tested on a temporally extended, partially observable 5x5 2D grid-world maze task that required the agent to learn 3 tasks over the duration of the training period. The results indicate that the addition of output gating increases the initial learning performance of an agent in target tasks and decreases the learning time required to reach a fixed performance threshold.


#7 Machine Number Sense: A Dataset of Visual Arithmetic Problems for Abstract and Relational Reasoning [PDF] [Copy] [Kimi] [REL]

Authors: Wenhe Zhang, Chi Zhang, Yixin Zhu, Song-Chun Zhu

As a comprehensive indicator of mathematical thinking and intelligence, the number sense (Dehaene 2011) bridges the induction of symbolic concepts and the competence of problem-solving. To endow such a crucial cognitive ability to machine intelligence, we propose a dataset, Machine Number Sense (MNS), consisting of visual arithmetic problems automatically generated using a grammar model—And-Or Graph (AOG). These visual arithmetic problems are in the form of geometric figures: each problem has a set of geometric shapes as its context and embedded number symbols. Solving such problems is not trivial; the machine not only has to recognize the number, but also to interpret the number with its contexts, shapes, and relations (e.g., symmetry) together with proper operations. We benchmark the MNS dataset using four predominant neural network models as baselines in this visual reasoning task. Comprehensive experiments show that current neural-network-based models still struggle to understand number concepts and relational operations. We show that a simple brute-force search algorithm could work out some of the problems without context information. Crucially, taking geometric context into account by an additional perception module would provide a sharp performance gain with fewer search steps. Altogether, we call for attention in fusing the classic search-based algorithms with modern neural networks to discover the essential number concepts in future research.