AAAI.2021 - AI Responses to the COVID-19 Pandemic

Total: 11

#1 Savable but Lost Lives when ICU Is Overloaded: a Model from 733 Patients in Epicenter Wuhan, China [PDF] [Copy] [Kimi]

Authors: Tingting Dan ; Yang Li ; Ziwei Zhu ; Xijie Chen ; Wuxiu Quan ; Yu Hu ; Guihua Tao ; Lei Zhu ; Jijin Zhu ; Hongmin Cai ; Hanchun Wen

Coronavirus Disease 2019 (COVID-19) causes a sudden turnover to bad at some checkpoints and thus needs the intervention of intensive care unit (ICU). This resulted in urgent and large needs of ICUs posed great risks to the medical system. Estimating the mortality of critical in-patients who were not admitted into the ICU will be valuable to optimize the management and assignment of ICU. Retrospective, 733 in-patients diagnosed with COVID-19 at a local hospital (Wuhan, China), as of March 18, 2020. Demographic, clinical and laboratory results were collected and analyzed using machine learning to build a predictive model. Considering the shortage of ICU beds at the beginning of disease emergence, we defined the mortality for those patients who were predicted to be in needing ICU care yet they did not as Missing-ICU (MI)-mortality. To estimate MI-mortality, a prognostic classification model was built to identify the in-patients who may need ICU care. Its predictive accuracy was 0.8288, with an AUC of 0.9119. On our cohort of 733 patients, 25 in-patients who have been predicted by our model that they should need ICU, yet they did not enter ICU due to lack of shorting ICU wards. Our analysis had shown that the MI-mortality is 41%, yet the mortality of ICU is 32%, implying that enough bed of ICU in treating patients in critical conditions.

#2 Persistence of Anti-vaccine Sentiment in Social Networks Through Strategic Interactions [PDF] [Copy] [Kimi]

Authors: A S M Ahsan-Ul Haque ; Mugdha Thakur ; Matthew Bielskas ; Achla Marathe ; Anil Vullikanti

Vaccination is the primary intervention for controlling the spread of infectious diseases. A certain level of vaccination rate (referred to as "herd immunity'') is needed for this intervention to be effective. However, there are concerns that herd immunity might not be achieved due to an increasing level of hesitancy and opposition to vaccines. One of the primary reasons for this is the cost of non-conformance with one's peers. We use the framework of network coordination games to study the persistence of anti-vaccine sentiment in a population. We extend it to incorporate the opposing forces of the pressure of conforming to peers, herd-immunity and vaccination benefits. We study the structure of the equilibria in such games, and the characteristics of unvaccinated nodes. We also study Stackelberg strategies to reduce the number of nodes with anti-vaccine sentiment. Finally, we evaluate our results on different kinds of real world social networks.

#3 Automated Model Design and Benchmarking of Deep Learning Models for COVID-19 Detection with Chest CT Scans [PDF] [Copy] [Kimi]

Authors: Xin He ; Shihao Wang ; Xiaowen Chu ; Shaohuai Shi ; Jiangping Tang ; Xin Liu ; Chenggang Yan ; Jiyong Zhang ; Guiguang Ding

The COVID-19 pandemic has spread globally for several months. Because its transmissibility and high pathogenicity seriously threaten people's lives, it is crucial to accurately and quickly detect COVID-19 infection. Many recent studies have shown that deep learning (DL) based solutions can help detect COVID-19 based on chest CT scans. However, most existing work focuses on 2D datasets, which may result in low quality models as the real CT scans are 3D images. Besides, the reported results span a broad spectrum on different datasets with a relatively unfair comparison. In this paper, we first use three state-of-the-art 3D models (ResNet3D101, DenseNet3D121, and MC3\_18) to establish the baseline performance on three publicly available chest CT scan datasets. Then we propose a differentiable neural architecture search (DNAS) framework to automatically search the 3D DL models for 3D chest CT scans classification and use the Gumbel Softmax technique to improve the search efficiency. We further exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results. The experimental results show that our searched models (CovidNet3D) outperform the baseline human-designed models on three datasets with tens of times smaller model size and higher accuracy. Furthermore, the results also verify that CAM can be well applied in CovidNet3D for COVID-19 datasets to provide interpretability for medical diagnosis. Code:

#4 STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological Regularization [PDF] [Copy] [Kimi]

Authors: Nikos Kargas ; Cheng Qian ; Nicholas D. Sidiropoulos ; Cao Xiao ; Lucas M. Glass ; Jimeng Sun

Accurate prediction of the transmission of epidemic diseases such as COVID-19 is crucial for implementing effective mitigation measures. In this work, we develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously. We construct a 3-way spatio-temporal tensor (location, attribute, time) of case counts and propose a nonnegative tensor factorization with latent epidemiological model regularization named STELAR. Unlike standard tensor factorization methods which cannot predict slabs ahead, STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations of a widely adopted epidemiological model. We use latent instead of location/attribute-level epidemiological dynamics to capture common epidemic profile sub-types and improve collaborative learning and prediction. We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic. Finally, we evaluate the predictive ability of our method and show superior performance compared to the baselines, achieving up to 21% lower root mean square error and 25% lower mean absolute error for county-level prediction.

#5 Transfer Graph Neural Networks for Pandemic Forecasting [PDF] [Copy] [Kimi]

Authors: George Panagopoulos ; Giannis Nikolentzos ; Michalis Vazirgiannis

The recent outbreak of COVID-19 has affected millions of individuals around the world and has posed a significant challenge to global healthcare. From the early days of the pandemic, it became clear that it is highly contagious and that human mobility contributes significantly to its spread. In this paper, we utilize graph representation learning to capitalize on the underlying relationship of population movement with the spread of COVID-19. Specifically, we create a graph where the nodes correspond to a country's regions, the features include the region's history of COVID-19, and the edge weights denote human mobility from one region to another. Subsequently, we employ graph neural networks to predict the number of future cases, encoding the underlying diffusion patterns that govern the spread into our learning model. Furthermore, to account for the limited amount of training data, we capitalize on the pandemic's asynchronous outbreaks across countries and use a model-agnostic meta-learning based method to transfer knowledge from one country's model to another's. We compare the proposed approach against simple baselines and more traditional forecasting techniques in 4 European countries. Experimental results demonstrate the superiority of our method, highlighting the usefulness of GNNs in epidemiological prediction. Transfer learning provides the best model, highlighting its potential to improve the accuracy of the predictions in case of secondary waves, given data from past/parallel outbreaks.

#6 MiniSeg: An Extremely Minimum Network for Efficient COVID-19 Segmentation [PDF] [Copy] [Kimi]

Authors: Yu Qiu ; Yun Liu ; Shijie Li ; Jing Xu

The rapid spread of the new pandemic, i.e., COVID-19, has severely threatened global health. Deep-learning-based computer-aided screening, e.g., COVID-19 infected CT area segmentation, has attracted much attention. However, the publicly available COVID-19 training data are limited, easily causing overfitting for traditional deep learning methods that are usually data-hungry with millions of parameters. On the other hand, fast training/testing and low computational cost are also necessary for quick deployment and development of COVID-19 screening systems, but traditional deep learning methods are usually computationally intensive. To address the above problems, we propose MiniSeg, a lightweight deep learning model for efficient COVID-19 segmentation. Compared with traditional segmentation methods, MiniSeg has several significant strengths: i) it only has 83K parameters and is thus not easy to overfit; ii) it has high computational efficiency and is thus convenient for practical deployment; iii) it can be fast retrained by other users using their private COVID-19 data for further improving performance. In addition, we build a comprehensive COVID-19 segmentation benchmark for comparing MiniSeg to traditional methods.

#7 Steering a Historical Disease Forecasting Model Under a Pandemic: Case of Flu and COVID-19 [PDF] [Copy] [Kimi]

Authors: Alexander Rodríguez ; Nikhil Muralidhar ; Bijaya Adhikari ; Anika Tabassum ; Naren Ramakrishnan ; B. Aditya Prakash

Forecasting influenza in a timely manner aids health organizations and policymakers in adequate preparation and decision making. However, effective influenza forecasting still remains a challenge despite increasing research interest. It is even more challenging amidst the COVID pandemic, when the influenza-like illness (ILI) counts are affected by various factors such as symptomatic similarities with COVID-19 and shift in healthcare seeking patterns of the general population. Under the current pandemic, historical influenza models carry valuable expertise about the disease dynamics but face difficulties adapting. Therefore, we propose CALI-Net, a neural transfer learning architecture which allows us to 'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist. Our framework enables this adaptation by automatically learning when it should emphasize learning from COVID-related signals and when it should learn from the historical model. Thus, we exploit representations learned from historical ILI data as well as the limited COVID-related signals. Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic. In addition, we show that success in our primary goal, adaptation, does not sacrifice overall performance as compared with state-of-the-art influenza forecasting approaches.

#8 Gaining Insight into SARS-CoV-2 Infection and COVID-19 Severity Using Self-supervised Edge Features and Graph Neural Networks [PDF] [Copy] [Kimi]

Authors: Arijit Sehanobish ; Neal Ravindra ; David van Dijk

A molecular and cellular understanding of how SARS-CoV-2 variably infects and causes severe COVID-19 remains a bottleneck in developing interventions to end the pandemic. We sought to use deep learning (DL) to study the biology of SARS-CoV-2 infection and COVID-19 severity by identifying transcriptomic patterns and cell types associated with SARS-CoV-2 infection and COVID-19 severity. To do this, we developed a new approach to generating self-supervised edge features. We propose a model that builds on Graph Attention Networks (GAT), creates edge features using self-supervised learning, and ingests these edge features via a Set Transformer. This model achieves significant improvements in predicting the disease state of individual cells, given their transcriptome. We apply our model to single-cell RNA sequencing datasets of SARS-CoV-2 infected lung organoids and bronchoalveolar lavage fluid samples of patients with COVID-19, achieving state-of-the-art performance on both datasets with our model. We then borrow from the field of explainable AI (XAI) to identify the features (genes) and cell types that discriminate bystander vs. infected cells across time and moderate vs. severe COVID-19 disease. To the best of our knowledge, this represents the first application of DL to identifying the molecular and cellular determinants of SARS-CoV-2 infection and COVID-19 severity using single-cell omics data.

#9 Context Matters: Graph-based Self-supervised Representation Learning for Medical Images [PDF] [Copy] [Kimi]

Authors: Li Sun ; Ke Yu ; Kayhan Batmanghelich

Supervised learning method requires a large volume of annotated datasets. Collecting such datasets is time-consuming and expensive. Until now, very few annotated COVID-19 imaging datasets are available. Although self-supervised learning enables us to bootstrap the training by exploiting unlabeled data, the generic self-supervised methods for natural images do not sufficiently incorporate the context. For medical images, a desirable method should be sensitive enough to detect deviation from normal-appearing tissue of each anatomical region; here, anatomy is the context. We introduce a novel approach with two levels of self-supervised representation learning objectives: one on the regional anatomical level and another on the patient-level. We use graph neural networks to incorporate the relationship between different anatomical regions. The structure of the graph is informed by anatomical correspondences between each patient and an anatomical atlas. In addition, the graph representation has the advantage of handling any arbitrarily sized image in full resolution. Experiments on large-scale Computer Tomography (CT) datasets of lung images show that our approach compares favorably to baseline methods that do not account for the context. We use the learnt embedding to quantify the clinical progression of COVID-19 and show that our method generalizes well to COVID-19 patients from different hospitals. Qualitative results suggest that our model can identify clinically relevant regions in the images.

#10 Tracking Disease Outbreaks from Sparse Data with Bayesian Inference [PDF] [Copy] [Kimi]

Authors: Bryan Wilder ; Michael Mina ; Milind Tambe

The COVID-19 pandemic provides new motivation for a classic problem in epidemiology: estimating the empirical rate of transmission during an outbreak (formally, the time-varying reproduction number) from case counts. While standard methods exist, they work best at coarse-grained national or state scales with abundant data, and struggle to accommodate the partial observability and sparse data common at finer scales (e.g., individual schools or towns). For example, case counts may be sparse when only a small fraction of infections are caught by a testing program. Or, whether an infected individual tests positive may depend on the kind of test and the point in time when they are tested. We propose a Bayesian framework which accommodates partial observability in a principled manner. Our model places a Gaussian process prior over the unknown reproduction number at each time step and models observations sampled from the distribution of a specific testing program. For example, our framework can accommodate a variety of kinds of tests (viral RNA, antibody, antigen, etc.) and sampling schemes (e.g., longitudinal or cross-sectional screening). Inference in this framework is complicated by the presence of tens or hundreds of thousands of discrete latent variables. To address this challenge, we propose an efficient stochastic variational inference method which relies on a novel gradient estimator for the variational objective. Experimental results for an example motivated by COVID-19 show that our method produces an accurate and well-calibrated posterior, while standard methods for estimating the reproduction number can fail badly.

#11 C-Watcher: A Framework for Early Detection of High-Risk Neighborhoods Ahead of COVID-19 Outbreak [PDF] [Copy] [Kimi]

Authors: Congxi Xiao ; Jingbo Zhou ; Jizhou Huang ; An Zhuo ; Ji Liu ; Haoyi Xiong ; Dejing Dou

The novel coronavirus disease (COVID-19) has crushed daily routines and is still rampaging through the world. Existing solution for nonpharmaceutical interventions usually needs to timely and precisely select a subset of residential urban areas for containment or even quarantine, where the spatial distribution of confirmed cases has been considered as a key criterion for the subset selection. While such containment measure has successfully stopped or slowed down the spread of COVID-19 in some countries, it is criticized for being inefficient or ineffective, as the statistics of confirmed cases are usually time-delayed and coarse-grained. To tackle the issues, we propose C-Watcher, a novel data-driven framework that aims at screening every neighborhood in a target city and predicting infection risks, prior to the spread of COVID-19 from epicenters to the city. In terms of design, C-Watcher collects large-scale long-term human mobility data from Baidu Maps, then characterizes every residential neighborhood in the city using a set of features based on urban mobility patterns. Furthermore, to transfer the firsthand knowledge (witted in epicenters) to the target city before local outbreaks, we adopt a novel adversarial encoder framework to learn “city-invariant” representations from the mobility-related features for precise early detection of high-risk neighborhoods, even before any confirmed cases known, in the target city. We carried out extensive experiments on C-Watcher using the real-data records in the early stage of COVID-19 outbreaks, where the results demonstrate the efficiency and effectiveness of C-Watcher for early detection of high-risk neighborhoods from a large number of cities.