Total: 155

No summary was provided.

Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary distribution $\pi$ under the sole assumption that $\pi$ satisfies a PoincarÃ© inequality. Using this fact to provide guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more challenging due to the need for working with chi-squared or RÃ©nyi divergences, and prior works have largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees for LMC assuming that $\pi$ satisfies either a LataÅ‚{}aâ€“Oleszkiewicz or modified log-Sobolev inequality, which interpolates between the PoincarÃ© and log-Sobolev settings. Unlike prior works, our results allow for weak smoothness and do not require convexity or dissipativity conditions.

Depth separation results propose a possible theoretical explanation for the benefits of deep neural networks over shallower architectures, establishing that the former possess superior approximation capabilities. However, there are no known results in which the deeper architecture leverages this advantage into a provable optimization guarantee. We prove that when the data are generated by a distribution with radial symmetry which satisfies some mild assumptions, gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations, and where the hidden layer is held fixed throughout training. By building on and refining existing techniques for approximation lower bounds of neural networks with a single layer of non-linearities, we show that there are $d$-dimensional radial distributions on the data such that ball indicators cannot be learned efficiently by any algorithm to accuracy better than $\Omega(d^{-4})$, nor by a standard gradient descent implementation to accuracy better than a constant. These results establish what is to the best of our knowledge, the first optimization-based separations where the approximation benefits of the stronger architecture provably manifest in practice. Our proof technique introduces new tools and ideas that may be of independent interest in the theoretical study of both the approximation and optimization of neural networks.

We study stochastic convex optimization under infinite noise variance. Specifically, when the stochastic gradient is unbiased and has uniformly bounded $(1+\kappa)$-th moment, for some $\kappa \in (0,1]$, we quantify the convergence rate of the Stochastic Mirror Descent algorithm with a particular class of uniformly convex mirror maps, in terms of the number of iterations, dimensionality and related geometric parameters of the optimization problem. Interestingly this algorithm does not require any explicit gradient clipping or normalization, which have been extensively used in several recent empirical and theoretical works. We complement our convergence results with information-theoretic lower bounds showing that no other algorithm using only stochastic first-order oracles can achieve improved rates. Our results have several interesting consequences for devising online/streaming stochastic approximation algorithms for problems arising in robust statistics and machine learning.

Wasserstein GANs with Gradient Penalty (WGAN-GP) are a very popular method for training generative models to produce high quality synthetic data. While WGAN-GP were initially developed to calculate the Wasserstein 1 distance between generated and real data, recent works (e.g. [23]) have provided empirical evidence that this does not occur, and have argued that WGAN-GP perform well not in spite of this issue, but because of it. In this paper we show for the first time that WGAN-GP compute the minimum of a different optimal transport problem, the so-called congested transport [7]. Congested transport determines the cost of moving one distribution to another under a transport model that penalizes congestion. For WGAN-GP, we find that the congestion penalty has a spatially varying component determined by the sampling strategy used in [12] which acts like a local speed limit, making congestion cost less in some regions than others. This aspect of the congested transport problem is new, in that the congestion penalty turns out to be unbounded and depends on the distributions to be transported, and so we provide the necessary mathematical proofs for this setting. One facet of our discovery is a formula connecting the gradient of solutions to the optimization problem in WGAN-GP to the time averaged momentum of the optimal mass flow. This is in contrast to the gradient of Kantorovich potentials for the Wasserstein 1 distance, which is just the normalized direction of flow. Based on this and other considerations, we speculate on how our results explain the observed performance of WGAN-GP. Beyond applications to GANs, our theorems also point to the possibility of approximately solving large scale congested transport problems using neural network techniques.

We study the problem of robustly estimating the parameter $p$ of an ErdÅ‘s-RÃ©nyi random graph on $n$ nodes, where a $\gamma$ fraction of nodes may be adversarially corrupted. After showing the deficiencies of canonical estimators, we design a computationally-efficient spectral algorithm which estimates $p$ up to accuracy $\tilde O(\sqrt{p(1-p)}/n + \gamma\sqrt{p(1-p)} /\sqrt{n}+ \gamma/n)$ for $\gamma < 1/60$. Furthermore, we give an inefficient algorithm with similar accuracy for all $\gamma<1/2$, the information-theoretic limit. Finally, we prove a nearly-matching statistical lower bound, showing that the error of our algorithms is optimal up to logarithmic factors.

Given a partition of a graph into connected components, the membership oracle asserts whether any two vertices of the graph lie in the same component or not. We prove that for $n\ge k\ge 2$, learning the components of an $n$-vertex hidden graph with $k$ components requires at least $(k-1)n-\binom k2$ membership queries. Our result improves on the best known information-theoretic bound of $\Omega(n\log k)$ queries, and exactly matches the query complexity of the algorithm introduced by [Reyzin and Srivastava, 2007] for this problem. Additionally, we introduce an oracle that can learn the number of components of $G$ in asymptotically fewer queries than learning the full partition, thus answering another question posed by the same authors. Lastly, we introduce a more applicable version of this oracle, and prove asymptotically tight bounds of $\widetilde\Theta(m)$ queries for both learning and verifying an $m$-edge hidden graph $G$ using it.

We revisit the classical online portfolio selection problem. It is widely assumed that a trade-off between computational complexity and regret is unavoidable, with Coverâ€™s Universal Portfolios algorithm, SOFT-BAYES and ADA-BARRONS currently constituting its state-of-the-art Pareto frontier. In this paper, we present the first efficient algorithm, BISONS, that obtains polylogarithmic regret with memory and per-step running time requirements that are polynomial in the dimension, displacing ADA-BARRONS from the Pareto frontier. Additionally, we resolve a COLT 2020 open problem by showing that a certain Follow-The-Regularized-Leader algorithm with log-barrier regularization suffers an exponentially larger dependence on the dimension than previously conjectured. Thus, we rule out this algorithm as a candidate for the Pareto frontier. We also extend our algorithm and analysis to a more general problem than online portfolio selection, viz. online learning of quantum states with log loss. This algorithm, called SCHRODINGERâ€™S-BISONS, ibs the first efficient algorithm with polylogarithmic regret for this more general problem.

Analysing statistical properties of neural networks is a central topic in statistics and machine learning. However, most results in the literature focus on the properties of the neural network minimizing the training error. The goal of this paper is to consider aggregated neural networks using a Gaussian prior. The departure point of our approach is an arbitrary aggregate satisfying the PAC-Bayesian inequality. The main contribution is a precise nonasymptotic assessment of the estimation error appearing in the PAC-Bayes bound. Our analysis is sharp enough to lead to minimax rates of estimation over Sobolev smoothness classes.

This paper studies an intriguing phenomenon related to the good generalization performance of estimators obtained by using large learning rates within gradient descent algorithms. First observed in the deep learning literature, we show that such a phenomenon can be precisely characterized in the context of kernel methods, even though the resulting optimization problem is convex. Specifically, we consider the minimization of a quadratic objective in a separable Hilbert space, and show that with early stopping, the choice of learning rate influences the spectral decomposition of the obtained solution on the Hessianâ€™s eigenvectors. This extends an intuition described by Nakkiran (2020) on a two-dimensional toy problem to realistic learning scenarios such as kernel ridge regression. While large learning rates may be proven beneficial as soon as there is a mismatch between the train and test objectives, we further explain why it already occurs in classification tasks without assuming any particular mismatch between train and test data distributions.

We consider the well-studied problem of learning intersections of halfspaces under the Gaussian distribution in the challenging \emph{agnostic learning} model. Recent work of Diakonikolas et al. (2021) shows that any Statistical Query (SQ) algorithm for agnostically learning the class of intersections of $k$ halfspaces over $\mathbb{R}^n$ to constant excess error either must make queries of tolerance at most $n^{-\tilde{\Omega}(\sqrt{\log k})}$ or must make $2^{n^{\Omega(1)}}$ queries. We strengthen this result by improving the tolerance requirement to $n^{-\tilde{\Omega}(\log k)}$. This lower bound is essentially best possible since an SQ algorithm of Klivans et al. (2008) agnostically learns this class to any constant excess error using $n^{O(\log k)}$ queries of tolerance $n^{-O(\log k)}$. We prove two variants of our lower bound, each of which combines ingredients from Diakonikolas et al. (2021) with (an extension of) a different earlier approach for agnostic SQ lower bounds for the Boolean setting due to Dachman-Soled et al. (2014). Our approach also yields lower bounds for agnostically SQ learning the class of "convex subspace juntas" (studied by Vempala, 2010) and the class of sets with bounded Gaussian surface area; all of these lower bounds are nearly optimal since they essentially match known upper bounds from Klivans et al. (2008).

We study convergence rates of AdaGrad-Norm as an exemplar of adaptive stochastic gradient methods (SGD), where the step sizes change based on observed stochastic gradients, for minimizing non-convex, smooth objectives. Despite their popularity, the analysis of adaptive SGD lags behind that of non adaptive methods in this setting. Specifically, all prior works rely on some subset of the following assumptions: (i) uniformly-bounded gradient norms, (ii) uniformly-bounded stochastic gradient variance (or even noise support), (iii) conditional independence between the step size and stochastic gradient. In this work, we show that AdaGrad-Norm exhibits an order optimal convergence rate of $\mathcal{O}\left(\frac{\mathrm{poly}\log(T)}{\sqrt{T}}\right)$ after $T$ iterations under the same assumptions as optimally-tuned non adaptive SGD (unbounded gradient norms and affine noise variance scaling), and crucially, without needing any tuning parameters. We thus establish that adaptive gradient methods exhibit order-optimal convergence in much broader regimes than previously understood.

We study the problem of heavy-tailed mean estimation in settings where the variance of the data-generating distribution does not exist. Concretely, given a sample $\bm{X} = \{X_i\}_{i = 1}^n$ from a distribution $\mc{D}$ over $\mb{R}^d$ with mean $\mu$ which satisfies the following \emph{weak-moment} assumption for some ${\alpha \in [0, 1]}$: \begin{equation*} \forall \norm{v} = 1: \mb{E}_{X \ts \mc{D}}[\abs{\inp{X - \mu}{v}}^{1 + \alpha}] \leq 1, \end{equation*} and given a target failure probability, $\delta$, our goal is to design an estimator which attains the smallest possible confidence interval as a function of $n,d,\delta$. For the specific case of $\alpha = 1$, foundational work of Lugosi and Mendelson exhibits an estimator achieving \emph{optimal} subgaussian confidence intervals, and subsequent work has led to computationally efficient versions of this estimator. Here, we study the case of general $\alpha$, and provide a precise characterization of the optimal achievable confidence interval by establishing the following information-theoretic lower bound: \begin{equation*} \Omega \lprp{\sqrt{\frac{d}{n}} + \lprp{\frac{d}{n}}^{\frac{\alpha}{(1 + \alpha)}} + \lprp{\frac{\log 1 / \delta}{n}}^{\frac{\alpha}{(1 + \alpha)}}}. \end{equation*} and devising an estimator matching the aforementioned lower bound up to constants. Moreover, our estimator is computationally efficient.

The theory of reinforcement learning has focused on two fundamental problems: achieving low regret, and identifying $\epsilon$-optimal policies. While a simple reduction allows one to apply a low-regret algorithm to obtain an $\epsilon$-optimal policy and achieve the worst-case optimal rate, it is unknown whether low-regret algorithms can obtain the instance-optimal rate for policy identification. We show this is not possibleâ€”there exists a fundamental tradeoff between achieving low regret and identifying an $\epsilon$-optimal policy at the instance-optimal rate. Motivated by our negative finding, we propose a new measure of instance-dependent sample complexity for PAC tabular reinforcement learning which explicitly accounts for the attainable state visitation distributions in the underlying MDP. We then propose and analyze a novel, planning-based algorithm which attains this sample complexityâ€”yielding a complexity which scales with the suboptimality gaps and the â€œreachabilityâ€� of a state. We show our algorithm is nearly minimax optimal, and on several examples that our instance-dependent sample complexity offers significant improvements over worst-case bounds.

We study the problem of learning a hypergraph via edge detecting queries. In this problem, a learner queries subsets of vertices of a hidden hypergraph and observes whether these subsets contain an edge or not. In general, learning a hypergraph with m edges of maximum size d requires Omega((2m/d)^{d/2}) queries. In this paper, we aim to identify families of hypergraphs that can be learned without suffering from a query complexity that grows exponentially in the size of the edges. We show that hypermatchings and low-degree near-uniform hypergraphs with n vertices are learnable with poly(n) queries. For learning hypermatchings (hypergraphs of maximum degree Delta = 1), we give an O(log^3 n)-round algorithm with O(n log^5 n) queries. We complement this upper bound by showing that there are no algorithms with poly(n) queries that learn hypermatchings in o(log log n) adaptive rounds. For hypergraphs with maximum degree Delta and edge size ratio rho, we give a non-adaptive algorithm with O((2n)^{rho Delta+1} log^2 n) queries. To the best of our knowledge, these are the first algorithms with poly(n, m) query complexity for learning non-trivial families of hypergraphs that have a super-constant number of edges of arbitrarily large size.

We construct pairs of distributions $\mu_d, \nu_d$ on $\mathbb{R}^d$ such that the quantity $|\mathbb{E}_{x \sim \mu_d} [F(x)] - \mathbb{E}_{x \sim \nu_d} [F(x)]|$ decreases as $\Omega(1/d^2)$ for some three-layer ReLU network $F$ with polynomial width and weights, while declining exponentially in $d$ if $F$ is any two-layer network with polynomial weights. This shows that deep GAN discriminators are able to distinguish distributions that shallow discriminators cannot. Analogously, we build pairs of distributions $\mu_d, \nu_d$ on $\mathbb{R}^d$ such that $|\mathbb{E}_{x \sim \mu_d} [F(x)] - \mathbb{E}_{x \sim \nu_d} [F(x)]|$ decreases as $\Omega(1/(d\log d))$ for two-layer ReLU networks with polynomial weights, while declining exponentially for bounded-norm functions in the associated RKHS. This confirms that feature learning is beneficial for discriminators. Our bounds are based on Fourier transforms.

The phenomenon of benign overfitting, where a predictor perfectly fits noisy training data while attaining low expected loss, has received much attention in recent years, but still remains not fully understood beyond simple linear regression setups. In this paper, we show that for regression, benign overfitting is â€œbiasedâ€� towards certain types of problems, in the sense that its existence on one learning problem precludes its existence on other learning problems. On the negative side, we use this to argue that one should not expect benign overfitting to occur in general, for several natural extensions of the plain linear regression problems studied so far. We then turn to classification problems, and show that the situation there is much more favorable. Specifically, we consider a model where an arbitrary input distribution of some fixed dimension k is concatenated with a high-dimensional distribution, and prove that the max-margin predictor (to which gradient-based methods are known to converge in direction) is asymptotically biased towards minimizing the expected \emph{squared hinge loss} w.r.t. the k-dimensional distribution. This allows us to reduce the question of benign overfitting in classification to the simpler question of whether this loss is a good surrogate for the misclassification error, and use it to show benign overfitting in some new settings.

We study universal consistency of non-i.i.d. processes in the context of online learning. A stochastic process is said to admit universal consistency if there exists a learner that achieves vanishing average loss for any measurable response function on this process. When the loss function is unbounded, [1] showed that the only processes admitting strong universal consistency are those taking a finite number of values almost surely. However, when the loss function is bounded, the class of processes admitting strong universal consistency is much richer and its characterization could be dependent on the response setting [2]. In this paper, we show that this class of processes is independent from the response setting thereby closing an open question of [3] (Open Problem 3). Specifically, we show that the class of processes that admit universal online learning is the same for binary classification as for multiclass classification with countable number of classes. Consequently, any output setting with bounded loss can be reduced to binary classification. Our reduction is constructive and practical. Indeed, we show that the nearest neighbor algorithm is transported by our construction. For binary classification on a process admitting strong universal learning, we prove that nearest neighbor successfully learns at least all finite unions of intervals.

Hamilton and Moitra (2021) showed that, in certain regimes, it is not possible to accelerate Riemannian gradient descent in the hyperbolic plane if we restrict ourselves to algorithms which make queries in a (large) bounded domain and which receive gradients and function values corrupted by a (small) amount of noise. We show that acceleration remains unachievable for any deterministic algorithm which receives exact gradient and function-value information (unbounded queries, no noise). Our results hold for a large class of Hadamard manifolds including hyperbolic spaces and the symmetric space $\mathrm{SL}(n) / \mathrm{SO}(n)$ of positive definite $n \times n$ matrices of determinant one. This cements a surprising gap between the complexity of convex optimization and geodesically convex optimization: for hyperbolic spaces, Riemannian gradient descent is optimal on the class of smooth and strongly geodesically convex functions (in the regime where the condition number scales with the radius of the optimization domain). The key idea for proving the lower bound consists of perturbing squared distance functions with sums of bump functions chosen by a resisting oracle.

We give the first polynomial-time, polynomial-sample, differentially private estimator for the mean and covariance of an arbitrary Gaussian distribution $N(\mu,\Sigma)$ in $\R^d$. All previous estimators are either nonconstructive, with unbounded running time, or require the user to specify a priori bounds on the parameters $\mu$ and $\Sigma$. The primary new technical tool in our algorithm is a new differentially private preconditioner that takes samples from an arbitrary Gaussian $N(0,\Sigma)$ and returns a matrix $A$ such that $A \Sigma A^T$ has constant condition number

We revisit the problem of tolerant distribution testing. That is, given samples from an unknown distribution $p$ over $\{1, â€¦, n\}$, is it $\varepsilon_1$-close to or $\varepsilon_2$-far from a reference distribution $q$ (in total variation distance)? Despite significant interest over the past decade, this problem is well understood only in the extreme cases. In the noiseless setting (i.e., $\varepsilon_1 = 0$) the sample complexity is $\Theta(\sqrt{n})$, strongly sublinear in the domain size. At the other end of the spectrum, when $\varepsilon_1 = \varepsilon_2/2$, the sample complexity jumps to the barely sublinear $\Theta(n/\log n)$. However, very little is known about the intermediate regime. We fully characterize the price of tolerance in distribution testing as a function of $n$, $\varepsilon_1$, $\varepsilon_2$, up to a single $\log n$ factor. Specifically, we show the sample complexity to be \[\tilde \Theta\mleft(\frac{\sqrt{n}}{\ve_2^{2}} + \frac{n}{\log n} \cdot \max \mleft\{\frac{\ve_1}{\ve_2^2},\mleft(\frac{\ve_1}{\ve_2^2}\mright)^{\!\!2}\mright\}\mright),\]{providing} a smooth tradeoff between the two previously known cases. We also provide a similar characterization for the problem of tolerant equivalence testing, where both $p$ and $q$ are unknown. Surprisingly, in both cases, the main quantity dictating the sample complexity is the ratio $\varepsilon_1/\varepsilon_2^2$, and not the more intuitive $\varepsilon_1/\varepsilon_2$. Of particular technical interest is our lower bound framework, which involves novel approximation-theoretic tools required to handle the asymmetry between $\varepsilon_1$ and $\varepsilon_2$, a challenge absent from previous works.

We present an asymptotically optimal $(\epsilon,\delta)$ differentially private mechanism for answering multiple, adaptively asked, $\Delta$-sensitive queries, settling the conjecture of Steinke and Ullman [2020]. Our algorithm has a significant advantage that it adds independent bounded noise to each query, thus providing an absolute error bound. Additionally, we apply our algorithm in adaptive data analysis, obtaining an improved guarantee for answering multiple queries regarding some underlying distribution using a finite sample. Numerical computations show that the bounded-noise mechanism outperforms the Gaussian mechanism in many standard settings.

We propose a practical algorithm for learning mappings between two metric spaces, $\X$ and $\Y$. Our procedure is strongly Bayes-consistent whenever $\X$ and $\Y$ are topologically separable and $\Y$ is â€œbounded in expectationâ€� (our term; the separability assumption can be somewhat weakened). At this level of generality, ours is the first such learnability result for unbounded loss in the agnostic setting. Our technique is based on metric medoids (a variant of FrÃ©chet means) and presents a significant departure from existing methods, which, as we demonstrate, fail to achieve Bayes-consistency on general instance- and label-space metrics. Our proofs introduce the technique of {\em semi-stable compression}, which may be of independent interest.

We examine one-hidden-layer neural networks with random weights. It is well-known that in the limit of infinitely many neurons they simplify to Gaussian processes. For networks with a polynomial activation, we demonstrate that the rate of this convergence in 2-Wasserstein metric is O(1/sqrt(n)), where n is the number of hidden neurons. We suspect this rate is asymptotically sharp. We improve the known convergence rate for other activations, to power-law in n for ReLU and inverse-square-root up to logarithmic factors for erf. We explore the interplay between spherical harmonics, Stein kernels and optimal transport in the non-isotropic setting.

We give the first polynomial time and sample (epsilon, delta)-differentially private (DP) algorithm to estimate the mean, covariance and higher moments in the presence of a constant fraction of adversarial outliers. Our algorithm succeeds for families of distributions that satisfy two well-studied properties in prior works on robust estimation: certifiable subgaussianity of directional moments and certifiable hypercontractivity of degree 2 polynomials. Our recovery guarantees hold in the â€œright affine-invariant normsâ€�: Mahalanobis distance for mean, multiplicative spectral and relative Frobenius distance guarantees for covariance and injective norms for higher moments. Prior works obtained private robust algorithms for mean estimation of subgaussian distributions with bounded covariance. For covariance estimation, ours is the first efficient algorithm (even in the absence of outliers) that succeeds without any condition-number assumptions. Our algorithms arise from a new framework that provides a general blueprint for modifying convex relaxations for robust estimation to satisfy strong worst-case stability guarantees in the appropriate parameter norms whenever the algorithms produce witnesses of correctness in their run. We verify such guarantees for a modification of standard sum-of-squares (SoS) semidefinite programming relaxations for robust estimation. Our privacy guarantees are obtained by combining stability guarantees with a new â€œestimate dependentâ€� noise injection mechanism in which noise scales with the eigenvalues of the estimated covariance. We believe this framework will be useful more generally in obtaining DP counterparts of robust estimators. Independently of our work, Ashtiani and Liaw [AL21] also obtained a polynomial time and sample private robust estimation algorithm for Gaussian distributions.