| Total: 3

Determining the optimal sample complexity of PAC learning in the realizable setting was a central open problem in learning theory for decades. Finally, the seminal work by Hanneke (2016) gave an algorithm with a provably optimal sample complexity. His algorithm is based on a careful and structured sub-sampling of the training data and then returning a majority vote among hypotheses trained on each of the sub-samples. While being a very exciting theoretical result, it has not had much impact in practice, in part due to inefficiency, since it constructs a polynomial number of sub-samples of the training data, each of linear size.In this work, we prove the surprising result that the practical and classic heuristic \emph{bagging} (a.k.a. bootstrap aggregation), due to Breiman (1996), is in fact also an optimal PAC learner. Bagging pre-dates Hanneke’s algorithm by twenty years and is taught in most undergraduate machine learning courses. Moreover, we show that it only requires a logarithmic number of sub-samples to reach optimality.

We design an $(\varepsilon, \delta)$-differentially private algorithm to estimate the mean of a $d$-variate distribution, with unknown covariance $\Sigma$, that is adaptive to $\Sigma$. To within polylogarithmic factors, the estimator achieves optimal rates of convergence with respect to the induced Mahalanobis norm $||\cdot||_\Sigma$, takes time $\tilde{O}(n d^2)$ to compute, has near linear sample complexity for sub-Gaussian distributions, allows $\Sigma$ to be degenerate or low rank, and adaptively extends beyond sub-Gaussianity. Prior to this work, other methods required exponential computation time or the superlinear scaling $n = \Omega(d^{3/2})$ to achieve non-trivial error with respect to the norm $||\cdot||_\Sigma$.

We present a fast, differentially private algorithm for high-dimensional covariance-aware mean estimation with nearly optimal sample complexity. Only exponential-time estimators were previously known to achieve this guarantee. Given $n$ samples from a (sub-)Gaussian distribution with unknown mean $\mu$ and covariance $\Sigma$, our $(\epsilon,\delta)$-differentially private estimator produces $\tilde{\mu}$ such that $\|\mu - \tilde{\mu}\|_{\Sigma} \leq \alpha$ as long as $n \gtrsim \tfrac d {\alpha^2} + \tfrac{d \sqrt{\log 1/\delta}}{\alpha \epsilon}+\frac{d\log 1/\delta}{\epsilon}$. The Mahalanobis error metric $\|\mu - \hat{\mu}\|_{\Sigma}$ measures the distance between $\hat \mu$ and $\mu$ relative to $\Sigma$; it characterizes the error of the sample mean. Our algorithm runs in time $\tilde{O}(nd^{\omega - 1} + nd/\eps)$, where $\omega < 2.38$ is the matrix multiplication exponent.We adapt an exponential-time approach of Brown, Gaboardi, Smith, Ullman, and Zakynthinou (2021), giving efficient variants of stable mean and covariance estimation subroutines that also improve the sample complexity to the nearly optimal bound above.Our stable covariance estimator can be turned to private covariance estimation for unrestricted subgaussian distributions. With $n\gtrsim d^{3/2}$ samples, our estimate is accurate in spectral norm. This is the first such algorithm using $n= o(d^2)$ samples, answering an open question posed by Alabi et al. (2022). With $n\gtrsim d^2$ samples, our estimate is accurate in Frobenius norm. This leads to a fast, nearly optimal algorithm for private learning of unrestricted Gaussian distributions in TV distance.Duchi, Haque, and Kuditipudi (2023) obtained similar results independently and concurrently.