Total: 3

We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a “price of adaptivity” (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch.

In the well-studied agnostic model of learning, the goal of a learner– given examples from an arbitrary joint distribution on $\mathbb{R}^d \times \{\pm 1\}$– is to output a hypothesis that is competitive (to within $\epsilon$) of the best fitting concept from some class. In order to escape strong hardness results for learning even simple concept classes in this model, we introduce a smoothed analysis framework where we require a learner to compete only with the best classifier that is robust to small random Gaussian perturbation. This subtle change allows us to give a wide array of learning results for any concept that (1) depends on a low-dimensional subspace (aka multi-index model) and (2) has a bounded Gaussian surface area. This class includes functions of halfspaces and (low-dimensional) convex sets, cases that are only known to be learnable in non-smoothed settings with respect to highly structured distributions such as Gaussians. Perhaps surprisingly, our analysis also yields new results for traditional non-smoothed frameworks such as learning with margin. In particular, we obtain the first algorithm for agnostically learning intersections of $k$-halfspaces in time $k^{\poly(\frac{\log k}{\epsilon \gamma}) }$ where $\gamma$ is the margin parameter. Before our work, the best-known runtime was exponential in $k$ (Arriaga and Vempala, 1999).

We show strong (and surprisingly simple) lower bounds for weakly learning intersections of halfspaces in the improper setting. Strikingly little is known about this problem. For instance, it is not even known if there is a polynomial-time algorithm for learning the intersection of only two halfspaces. On the other hand, lower bounds based on well-established assumptions (such as approximating worst-case lattice problems or variants of Feige’s 3SAT hypothesis) are only known (or are implied by existing results) for the intersection of super-logarithmically many halfspaces (KS06, KS09, DS16). With intersections of fewer halfspaces being only ruled out under less standard assumptions (DV21) (such as the existence of local pseudo-random generators with large stretch). We significantly narrow this gap by showing that even learning $\omega(\log \log N)$ halfspaces in dimension $N$ takes super-polynomial time under standard assumptions on worst-case lattice problems (namely that SVP and SIVP are hard to approximate within polynomial factors). Further, we give unconditional hardness results in the statistical query framework. Specifically, we show that for any $k$ (even constant), learning $k$ halfspaces in dimension $N$ requires accuracy $N^{-\Omega(k)}$, or exponentially many queries – in particular ruling out SQ algorithms with polynomial accuracy for $\omega(1)$ halfspaces. To the best of our knowledge this is the first unconditional hardness result for learning a super-constant number of halfspaces. Our lower bounds are obtained in a unified way via a novel connection we make between intersections of halfspaces and the so-called parallel pancakes distribution (DKS17, PLBR19, BRST21) that has been at the heart of many lower bound constructions in (robust) high-dimensional statistics in the past few years.