| Total: 547
Recently, deep learning models have made great progress in MWP solving on answer accuracy. However, they are uninterpretable since they mainly rely on shallow heuristics to achieve high performance without understanding and reasoning the grounded math logic. To address this issue and make a step towards interpretable MWP solving, we first construct a high-quality MWP dataset named InterMWP which consists of 11,495 MWPs and annotates interpretable logical formulas based on algebraic knowledge as the grounded linguistic logic of each solution equation. Different from existing MWP datasets, our InterMWP benchmark asks for a solver to not only output the solution expressions but also predict the corresponding logical formulas. We further propose a novel approach with logical prompt and interpretation generation, called LogicSolver. For each MWP, our LogicSolver first retrieves some highly-correlated algebraic knowledge and then passes them to the backbone model as prompts to improve the semantic representations of MWPs. With these improved semantic representations, our LogicSolver generates corresponding solution expressions and interpretable knowledge formulas in accord with the generated solution expressions, simultaneously. Experimental results show that our LogicSolver has stronger logical formula-based interpretability than baselines while achieving higher answer accuracy with the help of logical prompts, simultaneously. The source code and dataset will be available at https://github.com/yangzhch6/InterMWP.
In e-commerce, the salience of commonsense knowledge (CSK) is beneficial for widespread applications such as product search and recommendation. For example, when users search for “running” in e-commerce, they would like to find products highly related to running, such as “running shoes” rather than “shoes”. Nevertheless, many existing CSK collections rank statements solely by confidence scores, and there is no information about which ones are salient from a human perspective. In this work, we define the task of supervised salience evaluation, where given a CSK triple, the model is required to learn whether the triple is salient or not. In addition to formulating the new task, we also release a new Benchmark dataset of Salience Evaluation in E-commerce (BSEE) and hope to promote related research on commonsense knowledge salience evaluation. We conduct experiments in the dataset with several representative baseline models. The experimental results show that salience evaluation is a hard task where models perform poorly on our evaluation set. We further propose a simple but effective approach, PMI-tuning, which shows promise for solving this novel problem. Code is available in https://github.com/OpenBGBenchmark/OpenBG-CSK.
Semi-supervised learning has shown promise in allowing NLP models to generalize from small amounts of labeled data. Meanwhile, pretrained transformer models act as black-box correlation engines that are difficult to explain and sometimes behave unreliably. In this paper, we propose tackling both of these challenges via Automatic Rule Induction (ARI), a simple and general-purpose framework for the automatic discovery and integration of symbolic rules into pretrained transformer models. First, we extract weak symbolic rules from low-capacity machine learning models trained on small amounts of labeled data. Next, we use an attention mechanism to integrate these rules into high-capacity pretrained transformer models. Last, the rule-augmented system becomes part of a self-training framework to boost supervision signal on unlabeled data. These steps can be layered beneath a variety of existing weak supervision and semi-supervised NLP algorithms in order to improve performance and interpretability. Experiments across nine sequence classification and relation extraction tasks suggest that ARI can improve state-of-the-art methods with no manual effort and minimal computational overhead.
Transformer-based pre-trained models like BERT have achieved great progress on Semantic Sentence Matching. Meanwhile, dependency prior knowledge has also shown general benefits in multiple NLP tasks. However, how to efficiently integrate dependency prior structure into pre-trained models to better model complex semantic matching relations is still unsettled. In this paper, we propose the Dependency-Enhanced Adaptive Fusion Attention (DAFA), which explicitly introduces dependency structure into pre-trained models and adaptively fuses it with semantic information. Specifically, (i) DAFA first proposes a structure-sensitive paradigm to construct a dependency matrix for calibrating attention weights. (ii) It adopts an adaptive fusion module to integrate the obtained dependency information and the original semantic signals. Moreover, DAFA reconstructs the attention calculation flow and provides better interpretability. By applying it on BERT, our method achieves state-of-the-art or competitive performance on 10 public datasets, demonstrating the benefits of adaptively fusing dependency structure in semantic matching task.
We combine the capacity of sparsely gated Mixture-of-Experts (MoE) with the speed and stability of linear, mixing transformations to design the Sparse Mixer encoder model. Sparse Mixer slightly outperforms BERT on GLUE and SuperGLUE, but more importantly trains 65% faster and runs inference 61% faster. We also present a faster variant, prosaically named Fast Sparse Mixer, that marginally underperforms BERT on SuperGLUE, but trains and runs nearly twice as fast. We justify the design of these two models by carefully ablating through various mixing mechanisms, MoE configurations, and hyperparameters. Sparse Mixer overcomes many of the latency and stability concerns of MoE models and offers the prospect of serving sparse student models, without resorting to distilling them to dense variants.
Commonsense question answering (CQA) aims to choose the correct answers for commonsense questions. Most existing works focus on extracting and reasoning over external knowledge graphs (KG). However, the noise in KG prevents these models from learning effective representations. In this paper, we propose a Knowledge Enhanced Graph Contrastive Learning model (KE-GCL) by incorporating the contextual descriptions of entities and adopting a graph contrastive learning scheme. Specifically, for QA pairs we represent the knowledge from KG and contextual descriptions. Then, the representations of contextual descriptions as context nodes are inserted into KG, forming the knowledge-enhanced graphs. Moreover, we design a contrastive learning method on graphs. For knowledge-enhanced graphs, we build their augmented views with an adaptive sampling strategy. After that, we reason over graphs to update their representations by scattering edges and aggregating nodes. To further improve GCL, hard graph negatives are chosen based on incorrect answers. Extensive experiments on two benchmark datasets demonstrate the effectiveness of our proposed KE-GCL, which outperforms previous methods consistently.
The role of the attention mechanism in encoding linguistic knowledge has received special interest in NLP. However, the ability of the attention heads to judge the grammatical acceptability of a sentence has been underexplored. This paper approaches the paradigm of acceptability judgments with topological data analysis (TDA), showing that the geometric properties of the attention graph can be efficiently exploited for two standard practices in linguistics: binary judgments and linguistic minimal pairs. Topological features enhance the BERT-based acceptability classifier scores by 8%-24% on CoLA in three languages (English, Italian, and Swedish). By revealing the topological discrepancy between attention maps of minimal pairs, we achieve the human-level performance on the BLiMP benchmark, outperforming nine statistical and Transformer LM baselines. At the same time, TDA provides the foundation for analyzing the linguistic functions of attention heads and interpreting the correspondence between the graph features and grammatical phenomena. We publicly release the code and other materials used in the experiments.
Derivative-free prompt learning has emerged as a lightweight alternative to prompt tuning, which only requires model inference to optimize the prompts. However, existing work did not take full advantage of the over-parameterized characteristics of large pre-trained language models (PLMs). In this paper, we propose Clip-Tuning, a simple yet effective method that adopts diverse frozen “thinned” networks of PLMs to obtain *a mixture of rewards* and thus advance the derivative-free prompt learning. The thinned networks consist of all the hidden units that survive a stationary dropout strategy, whose inference predictions reflect an ensemble of partial views over prompted training samples. Our method outperforms previous gradient-free prompt learning methods and achieves parity with gradient-based counterparts on seven language understanding benchmarks under few-shot settings.
Code contrastive pre-training has recently achieved significant progress on code-related tasks. In this paper, we present SCodeR, a Soft-labeled contrastive pre-training framework with two positive sample construction methods to learn functional-level Code Representation. Considering the relevance between codes in a large-scale code corpus, the soft-labeled contrastive pre-training can obtain fine-grained soft-labels through an iterative adversarial manner and use them to learn better code representation. The positive sample construction is another key for contrastive pre-training. Previous works use transformation-based methods like variable renaming to generate semantically equal positive codes. However, they usually result in the generated code with a highly similar surface form, and thus mislead the model to focus on superficial code structure instead of code semantics. To encourage SCodeR to capture semantic information from the code, we utilize code comments and abstract syntax sub-trees of the code to build positive samples. We conduct experiments on four code-related tasks over seven datasets. Extensive experimental results show that SCodeR achieves new state-of-the-art performance on all of them, which illustrates the effectiveness of the proposed pre-training method.
Image-text retrieval is a fundamental cross-modal task that takes image/text as a query to retrieve relevant data of another type. The large-scale two-stream pre-trained models like CLIP have achieved tremendous success in this area. They embed the images and texts into instance representations with two separate encoders, aligning them on the instance-level with contrastive learning. Beyond this, the following works adopt the fine-grained token-level interaction (Masked Language and Image Modeling) to boost performance further. However, the vanilla token-level objectives are not designed to aggregate the image-text alignment information into the instance representations, but the token representations, causing a gap between pre-training and application. To address this issue, we carefully design two novel conditioned token-level pre-training objectives, Conditioned Masked Language and Image Modeling (ConMLM and ConMIM), forcing models to aggregate the token-level alignment information into the instance representations. Combing with the instance-level contrastive learning, we propose our cross-modal dense retrieval framework, Conditioned Language-Image Pre-training (ConLIP). Experimental results on two popular cross-modal retrieval benchmarks (MSCOCO and Flickr30k) reveal the effectiveness of our methods.
In simultaneous speech translation (SimulST), finding the best trade-off between high output quality and low latency is a challenging task. To meet the latency constraints posed by different application scenarios, multiple dedicated SimulST models are usually trained and maintained, generating high computational costs. In this paper, also motivated by the increased sensitivity towards sustainable AI, we investigate whether a single model trained offline can serve both offline and simultaneous applications under different latency regimes without additional training or adaptation. Experiments on en->de, es show that, aside from facilitating the adoption of well-established offline architectures and training strategies without affecting latency, offline training achieves similar or better quality compared to the standard SimulST training protocol, also being competitive with the state-of-the-art system.
Word translation without parallel corpora has become feasible, rivaling the performance of supervised methods. Recent findings have shown the improvement in accuracy and robustness of unsupervised word translation (UWT) by utilizing visual observations, which are universal representations across languages. Our work investigates the potential of using not only visual observations but also pretrained language-image models for enabling a more efficient and robust UWT. We develop a novel UWT method dubbed Word Alignment using Language-Image Pretraining (WALIP), leveraging visual observations via the shared image-text embedding space of CLIPs (Radford et al., 2021). WALIP has a two-step procedure. First, we retrieve word pairs with high confidences of similarity, computed using our proposed image-based fingerprints, which define the initial pivot for the alignment. Second, we apply our robust Procrustes algorithm to estimate the linear mapping between two embedding spaces, which iteratively corrects and refines the estimated alignment. Our extensive experiments show that WALIP improves upon the state-of-the-art performance of bilingual word alignment for a few language pairs across different word embeddings and displays great robustness to the dissimilarity of language pairs or training corpora for two word embeddings.
A common thread of open-domain question answering (QA) models employs a retriever-reader pipeline that first retrieves a handful of relevant passages from Wikipedia and then peruses the passages to produce an answer. However, even state-of-the-art readers fail to capture the complex relationships between entities appearing in questions and retrieved passages, leading to answers that contradict the facts. In light of this, we propose a novel knowledge graph enhanced passage reader, namely Grape, to improve the reader performance for open-domain QA. Specifically, for each pair of question and retrieved passage, we first construct a localized bipartite graph, attributed to entity embeddings extracted from the intermediate layer of the reader model. Then, a graph neural network learns relational knowledge while fusing graph and contextual representations into the hidden states of the reader model. Experiments on three open-domain QA benchmarks show Grape can improve the state-of-the-art performance by up to 2.2 exact match score with a negligible overhead increase, with the same retriever and retrieved passages. Our code is publicly available at https://github.com/jumxglhf/GRAPE.
Narrative summarization aims to produce a distilled version of a narrative to describe its most salient events and characters. Writing a summary for a narrative is challenging as it requires an understanding of event causality and character behaviors. To encourage research in this direction, we propose NarraSum, a large-scale narrative summarization dataset. It contains 122K narratives, which are collected from the synopses of movies and TV episodes with diverse genres, and their corresponding abstractive summaries. Experiments show that there is a large performance gap between humans and the state-of-the-art summarization models on NarraSum. We hope that this dataset will promote future research in summarization, as well as broader studies of natural language understanding and generation. The dataset is available at https://github.com/zhaochaocs/narrasum.
Being able to rank the similarity of short text segments is an interesting bonus feature of neural machine translation. Translation-based similarity measures include direct and pivot translation probability, as well as translation cross-likelihood, which has not been studied so far. We analyze these measures in the common framework of multilingual NMT, releasing the NMTScore library. Compared to baselines such as sentence embeddings, translation-based measures prove competitive in paraphrase identification and are more robust against adversarial or multilingual input, especially if proper normalization is applied. When used for reference-based evaluation of data-to-text generation in 2 tasks and 17 languages, translation-based measures show a relatively high correlation to human judgments.
Some claim language models understand us. Others won’t hear it. To clarify, I investigate three views of human language understanding: as-mapping, as-reliability and as-representation. I argue that while behavioral reliability is necessary for understanding, internal representations are sufficient; they climb the right hill. I review state-of-the-art language and multi-modal models: they are pragmatically challenged by under-specification of form. I question the Scaling Paradigm: limits on resources may prohibit scaled-up models from approaching understanding. Last, I describe how as-representation advances a science of understanding. We need work which probes model internals, adds more of human language, and measures what models can learn.
Dialogue meaning representation formulates natural language utterance semantics in their conversational context in an explicit and machine-readable form. Previous work typically follows the intent-slot framework, which is easy for annotation yet limited in scalability for complex linguistic expressions. A line of works alleviates the representation issue by introducing hierarchical structures but challenging to express complex compositional semantics, such as negation and coreference. We propose Dialogue Meaning Representation (DMR), a pliable and easily extendable representation for task-oriented dialogue. Our representation contains a set of nodes and edges to represent rich compositional semantics. Moreover, we propose an inheritance hierarchy mechanism focusing on domain extensibility. Additionally, we annotated DMR-FastFood, a multi-turn dialogue dataset with more than 70k utterances, with DMR. We propose two evaluation tasks to evaluate different dialogue models and a novel coreference resolution model GNNCoref for the graph-based coreference resolution task. Experiments show that DMR can be parsed well with pre-trained Seq2Seq models, and GNNCoref outperforms the baseline models by a large margin. The dataset and code are available at https://github.com/amazon-research/dialogue-meaning-representation
Chinese Spell Checking (CSC) aims to detect and correct Chinese spelling errors. Recent researches start from the pretrained knowledge of language models and take multimodal information into CSC models to improve the performance. However, they overlook the rich knowledge in the dictionary, the reference book where one can learn how one character should be pronounced, written, and used. In this paper, we propose the LEAD framework, which renders the CSC model to learn heterogeneous knowledge from the dictionary in terms of phonetics, vision, and meaning. LEAD first constructs positive and negative samples according to the knowledge of character phonetics, glyphs, and definitions in the dictionary. Then a unified contrastive learning-based training scheme is employed to refine the representations of the CSC models. Extensive experiments and detailed analyses on the SIGHAN benchmark datasets demonstrate the effectiveness of our proposed methods.
Despite their recent popularity and well-known advantages, dense retrievers still lag behind sparse methods such as BM25 in their ability to reliably match salient phrases and rare entities in the query and to generalize to out-of-domain data. It has been argued that this is an inherent limitation of dense models. We rebut this claim by introducing the Salient Phrase Aware Retriever (SPAR), a dense retriever with the lexical matching capacity of a sparse model. We show that a dense Lexical Model Λ can be trained to imitate a sparse one, and SPAR is built by augmenting a standard dense retriever with Λ. Empirically, SPAR shows superior performance on a range of tasks including five question answering datasets, MS MARCO passage retrieval, as well as the EntityQuestions and BEIR benchmarks for out-of-domain evaluation, exceeding the performance of state-of-the-art dense and sparse retrievers. The code and models of SPAR are available at: https://github.com/facebookresearch/dpr-scale/tree/main/spar
Automatic product attribute value extraction refers to the task of identifying values of an attribute from the product information. Product attributes are essential in improving online shopping experience for customers. Most existing methods focus on extracting attribute values from product title and description. However, in many real-world applications, a product is usually represented by multiple modalities beyond title and description, such as product specifications, text and visual information from the product image, etc. In this paper, we propose SMARTAVE, a Structure Mltimodal trAnsformeR for producT Attribute Value Extraction, which jointly encodes the structured product information from multiple modalities. Specifically, in SMARTAVE encoder, we introduce hyper-tokens to represent the modality-level information, and local-tokens to represent the original text and visual inputs. Structured attention patterns are designed among the hyper-tokens and local-tokens for learning effective product representation. The attribute values are then extracted based on the learned embeddings. We conduct extensive experiments on two multimodal product datasets. Experimental results demonstrate the superior performance of the proposed approach over several state-of-the-art methods. Ablation studies validate the effectiveness of the structured attentions in modeling the multimodal product information.
With the rapid development of pre-training techniques, a number of language models have been pre-trained on large-scale code corpora and perform well in code generation. In this paper, we investigate how to equip pre-trained language models with the ability of code generation for private libraries. In practice, it is common for programmers to write code using private libraries. However, this is a challenge for language models since they have never seen private APIs during training. Motivated by the fact that private libraries usually come with elaborate API documentation, we propose a novel framework with two modules: the APIRetriever finds useful APIs, and then the APICoder generates code using these APIs. For APIRetriever, we present a dense retrieval system and also design a friendly interaction to involve uses. For APICoder, we can directly use off-the-shelf language models, or continually pre-train the base model on a code corpus containing API information. Both modules are trained with data from public libraries and can be generalized to private ones. Furthermore, we craft three benchmarks for private libraries, named TorchDataEval, MonkeyEval, and BeatNumEval. Experimental results demonstrate the impressive performance of our framework.
Previous studies on cross-domain sentiment classification depend on the pivot features or utilize the target data for representation learning, which ignore the semantic relevance between different domains. To this end, we exploit Abstract Meaning Representation (AMR) to help with cross-domain sentiment classification. Compared with the textual input, AMR reduces data sparsity and explicitly provides core semantic knowledge and correlations between different domains. In particular, we develop an algorithm to construct a sentiment-driven semantic graph from sentence-level AMRs. We further design two strategies to linearize the semantic graph and propose a text-graph interaction model to fuse the text and semantic graph representations for cross-domain sentiment classification. Empirical studies show the effectiveness of our proposed model over several strong baselines. The results also indicate the importance of the proposed sentiment-driven semantic graph for cross-domain sentiment classification.
The shift towards publicly available text sources has enabled language processing at unprecedented scale, yet leaves under-serviced the domains where public and openly licensed data is scarce. Proactively collecting text data for research is a viable strategy to address this scarcity, but lacks systematic methodology taking into account the many ethical, legal and confidentiality-related aspects of data collection. Our work presents a case study on proactive data collection in peer review – a challenging and under-resourced NLP domain. We outline ethical and legal desiderata for proactive data collection and introduce “Yes-Yes-Yes”, the first donation-based peer reviewing data collection workflow that meets these requirements. We report on the implementation of Yes-Yes-Yes at ACL Rolling Review and empirically study the implications of proactive data collection for the dataset size and the biases induced by the donation behavior on the peer reviewing platform.
It is still a pipe dream that personal AI assistants on the phone and AR glasses can assist our daily life in addressing our questions like “how to adjust the date for this watch?” and “how to set its heating duration? (while pointing at an oven)”. The queries used in conventional tasks (i.e. Video Question Answering, Video Retrieval, Moment Localization) are often factoid and based on pure text. In contrast, we present a new task called Task-oriented Question-driven Video Segment Retrieval (TQVSR). Each of our questions is an image-box-text query that focuses on affordance of items in our daily life and expects relevant answer segments to be retrieved from a corpus of instructional video-transcript segments. To support the study of this TQVSR task, we construct a new dataset called AssistSR. We design novel guidelines to create high-quality samples. This dataset contains 3.2k multimodal questions on 1.6k video segments from instructional videos on diverse daily-used items. To address TQVSR, we develop a simple yet effective model called Dual Multimodal Encoders (DME) that significantly outperforms several baseline methods while still having large room for improvement in the future. Moreover, we present detailed ablation analyses. Code and data are available at https://github.com/StanLei52/TQVSR.
Despite the potential of federated learning, it is known to be vulnerable to backdoor attacks. Many robust federated aggregation methods are proposed to reduce the potential backdoor risk. However, they are mainly validated in the CV field. In this paper, we find that NLP backdoors are hard to defend against than CV, and we provide a theoretical analysis that the malicious update detection error probabilities are determined by the relative backdoor strengths. NLP attacks tend to have small relative backdoor strengths, which may result in the failure of robust federated aggregation methods for NLP attacks. Inspired by the theoretical results, we can choose some dimensions with higher backdoor strengths to settle this issue. We propose a novel federated aggregation algorithm, Dim-Krum, for NLP tasks, and experimental results validate its effectiveness.