ICLR.2024

Total: 2261

#1 Mixed-Type Tabular Data Synthesis with Score-based Diffusion in Latent Space [PDF173] [Copy] [Kimi492]

Authors: Hengrui Zhang ; Jiani Zhang ; Zhengyuan Shen ; Balasubramaniam Srinivasan ; Xiao Qin ; Christos Faloutsos ; Huzefa Rangwala ; George Karypis

Recent advances in tabular data generation have greatly enhanced synthetic data quality. However, extending diffusion models to tabular data is challenging due to the intricately varied distributions and a blend of data types of tabular data. This paper introduces TABSYN, a methodology that synthesizes tabular data by leveraging a diffusion model within a variational autoencoder (VAE) crafted latent space.The key advantages of the proposed TabSyn include (1) Generality: the ability to handle a broad spectrum of data types by converting them into a single unified space and explicitly capture inter-column relations, (2) Quality: optimizing the distribution of latent embeddings to enhance the subsequent training of diffusion models, which helps generate high-quality synthetic data, (3) Speed: much fewer number of reverse steps and faster synthesis speed than existing diffusion-based methods. Extensive experiments on six datasets with five metrics demonstrate that TabSyn outperforms existing methods. Specifically, it reduces the error rates by 86% and 67% for column-wise distribution and pair-wise column correlation estimations compared with the most competitive baselines, its superiority in accuratelylearning the data distributions of tabular data.

#2 Multi-granularity Correspondence Learning from Long-term Noisy Videos [PDF43] [Copy] [Kimi130]

Authors: Yijie Lin ; Jie Zhang ; Zhenyu Huang ; Jia Liu ; zujie wen ; Xi Peng

Existing video-language studies mainly focus on learning short video clips, leaving long-term temporal dependencies rarely explored due to over-high computational cost of modeling long videos. To address this issue, one feasible solution is learning the correspondence between video clips and captions, which however inevitably encounters the multi-granularity noisy correspondence (MNC) problem. To be specific, MNC refers to the clip-caption misalignment (coarse-grained) and frame-word misalignment (fine-grained), hindering temporal learning and video understanding. In this paper, we propose NOise Robust Temporal Optimal traNsport (Norton) that addresses MNC in a unified optimal transport (OT) framework. In brief, Norton employs video-paragraph and clip-caption contrastive losses to capture long-term dependencies based on OT. To address coarse-grained misalignment in video-paragraph contrast, Norton filters out the irrelevant clips and captions through an alignable prompt bucket and realigns asynchronous clip-caption pairs based on transport distance. To address the fine-grained misalignment, Norton incorporates a soft-maximum operator to identify crucial words and key frames. Additionally, Norton exploits the potential faulty negative samples in clip-caption contrast by rectifying the alignment target with OT assignment to ensure precise temporal modeling. Extensive experiments on video retrieval, videoQA, and action segmentation verify the effectiveness of our method. Code is available at https://lin-yijie.github.io/projects/Norton.

#3 Candidate Label Set Pruning: A Data-centric Perspective for Deep Partial-label Learning [PDF31] [Copy] [Kimi99]

Authors: Shuo He ; Chaojie Wang ; Guowu Yang ; Lei Feng

Partial-label learning (PLL) allows each training example to be equipped with a set of candidate labels. Existing deep PLL research focuses on a \emph{learning-centric} perspective to design various training strategies for label disambiguation i.e., identifying the concealed true label from the candidate label set, for model training. However, when the size of the candidate label set becomes excessively large, these learning-centric strategies would be unable to find the true label for model training, thereby causing performance degradation. This motivates us to think from a \emph{data-centric} perspective and pioneer a new PLL-related task called candidate label set pruning (CLSP) that aims to filter out certain potential false candidate labels in a training-free manner. To this end, we propose the first CLSP method based on the inconsistency between the representation space and the candidate label space. Specifically, for each candidate label of a training instance, if it is not a candidate label of the instance's nearest neighbors in the representation space, then it has a high probability of being a false label. Based on this intuition, we employ a per-example pruning scheme that filters out a specific proportion of high-probability false candidate labels. Theoretically, we prove an upper bound of the pruning error rate and analyze how the quality of representations affects our proposed method. Empirically, extensive experiments on both benchmark-simulated and real-world PLL datasets validate the great value of CLSP to significantly improve many state-of-the-art deep PLL methods.

#4 InfoBatch: Lossless Training Speed Up by Unbiased Dynamic Data Pruning [PDF39] [Copy] [Kimi94]

Authors: Ziheng Qin ; Kai Wang ; Zangwei Zheng ; Jianyang Gu ; Xiangyu Peng ; Zhaopan Xu ; Zhou Daquan ; Lei Shang ; Baigui Sun ; Xuansong Xie ; Yang You

Data pruning aims to obtain lossless performances with less overall cost. A common approach is to filter out samples that make less contribution to the training. This could lead to gradient expectation bias compared to the original data. To solve this problem, we propose InfoBatch, a novel framework aiming to achieve lossless training acceleration by unbiased dynamic data pruning. Specifically, InfoBatchrandomly prunes a portion of less informative samples based on the loss distribution and rescales the gradients of the remaining samples to approximate the original gradient. As a plug-and-play and architecture-agnostic framework, InfoBatch consistently obtains lossless training results on classification, semantic segmentation, vision pertaining, and instruction fine-tuning tasks. On CIFAR10/100, ImageNet-1K, and ADE20K, InfoBatch losslessly saves 40% overall cost. For pertaining MAE and diffusion model, InfoBatch can respectively save 24.8% and 27% cost. For LLaMA instruction fine-tuning, InfoBatch is also able to save 20% cost and is compatible with coreset selection methods. The code will be made public.

#5 Unified Generative Modeling of 3D Molecules with Bayesian Flow Networks [PDF17] [Copy] [Kimi52]

Authors: Yuxuan Song ; Jingjing Gong ; Hao Zhou ; Mingyue Zheng ; Jingjing Liu ; Wei-Ying Ma

Advanced generative model (\textit{e.g.}, diffusion model) derived from simplified continuity assumptions of data distribution, though showing promising progress, has been difficult to apply directly to geometry generation applications due to the \textit{multi-modality} and \textit{noise-sensitive} nature of molecule geometry. This work introduces Geometric Bayesian Flow Networks (GeoBFN), which naturally fits molecule geometry by modeling diverse modalities in the differentiable parameter space of distributions. GeoBFN maintains the SE-(3) invariant density modeling property by incorporating equivariant inter-dependency modeling on parameters of distributions and unifying the probabilistic modeling of different modalities. Through optimized training and sampling techniques, we demonstrate that GeoBFN achieves state-of-the-art performance on multiple 3D molecule generation benchmarks in terms of generation quality (90.87\% molecule stability in QM9 and 85.6\% atom stability in GEOM-DRUG\footnote{The scores are reported at 1k sampling steps for fair comparison, and our scores could be further improved if sampling sufficiently longer steps.}). GeoBFN can also conduct sampling with any number of steps to reach an optimal trade-off between efficiency and quality (\textit{e.g.}, 20$\times$ speedup without sacrificing performance).

#6 One-shot Empirical Privacy Estimation for Federated Learning [PDF7] [Copy] [Kimi47]

Authors: Galen Andrew ; Peter Kairouz ; Sewoong Oh ; Alina Oprea ; H. Brendan McMahan ; Vinith Suriyakumar

Privacy estimation techniques for differentially private (DP) algorithms are useful for comparing against analytical bounds, or to empirically measure privacy loss insettings where known analytical bounds are not tight. However, existing privacy auditing techniques usually make strong assumptions on the adversary (e.g., knowl-edge of intermediate model iterates or the training data distribution), are tailored to specific tasks, model architectures, or DP algorithm, and/or require retraining the model many times (typically on the order of thousands). These shortcomings make deploying such techniques at scale difficult in practice, especially in federatedsettings where model training can take days or weeks. In this work, we present a novel “one-shot” approach that can systematically address these challenges, al-lowing efficient auditing or estimation of the privacy loss of a model during the same, single training run used to fit model parameters, and without requiring anyaprioriknowledge about the model architecture, task, or DP algorithm. We show that our method provides provably correct estimates for the privacy loss under the Gaussian mechanism, and we demonstrate its performance on a well-established FL benchmark dataset under several adversarial threat models.

#7 Cameras as Rays: Sparse-view Pose Estimation via Ray Diffusion [PDF15] [Copy] [Kimi47]

Authors: Jason Zhang ; Amy Lin ; MONEISH KUMAR ; Tzu-Hsuan Yang ; Deva Ramanan ; Shubham Tulsiani

Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparse views ($<$10). In contrast to existing approaches that pursue top-down prediction of global parametrizations of camera extrinsics, we propose a distributed representation of camera pose that treats a camera as a bundle of rays. This representation allows for a tight coupling with spatial image features improving pose precision. We observe that this representation is naturally suited for set-level level transformers and develop a regression-based approach that maps image patches to corresponding rays. To capture the inherent uncertainties in sparse-view pose inference, we adapt this approach to learn a denoising diffusion model which allows us to sample plausible modes while improving performance. Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D while generalizing to unseen object categories and in-the-wild captures.

#8 Less is More: Fewer Interpretable Region via Submodular Subset Selection [PDF16] [Copy] [Kimi82]

Authors: Ruoyu Chen ; Hua Zhang ; Siyuan Liang ; Jingzhi Li ; Xiaochun Cao

Image attribution algorithms aim to identify important regions that are highly relevant to model decisions. Although existing attribution solutions can effectively assign importance to target elements, they still face the following challenges: 1) existing attribution methods generate inaccurate small regions thus misleading the direction of correct attribution, and 2) the model cannot produce good attribution results for samples with wrong predictions. To address the above challenges, this paper re-models the above image attribution problem as a submodular subset selection problem, aiming to enhance model interpretability using fewer regions. To address the lack of attention to local regions, we construct a novel submodular function to discover more accurate fine-grained interpretation regions. To enhance the attribution effect for all samples, we also impose four different constraints on the selection of sub-regions, i.e., confidence, effectiveness, consistency, and collaboration scores, to assess the importance of various subsets. Moreover, we also analyze the link between the validity of the submodular function and four constraints at the level of theoretical aspects. Extensive experiments show that the proposed method outperforms SOTA methods on two face datasets (Celeb-A and VGG-Face2) and one fine-grained dataset (CUB-200-2011). For correctly predicted samples, the proposed method improves the Deletion and Insertion scores with an average of 4.9% and 2.5% gain relative to HSIC-Attribution. For incorrectly predicted samples, our method achieves gains of 81.0% and 18.4% compared to the HSIC-Attribution algorithm in the average highest confidence and Insertion score respectively.

#9 Statistically Optimal $K$-means Clustering via Nonnegative Low-rank Semidefinite Programming [PDF8] [Copy] [Kimi39]

Authors: Yubo Zhuang ; Xiaohui Chen ; Yun Yang ; Richard Zhang

$K$-means clustering is a widely used machine learning method for identifying patterns in large datasets. Semidefinite programming (SDP) relaxations have recently been proposed for solving the $K$-means optimization problem that enjoy strong statistical optimality guarantees, but the prohibitive cost of implementing an SDP solver renders these guarantees inaccessible to practical datasets. By contrast, nonnegative matrix factorization (NMF) is a simple clustering algorithm that is widely used by machine learning practitioners, but without a solid statistical underpinning nor rigorous guarantees. In this paper, we describe an NMF-like algorithm that works by solving a \emph{nonnegative} low-rank restriction of the SDP relaxed $K$-means formulation using a nonconvex Burer--Monteiro factorization approach. The resulting algorithm is just as simple and scalable as state-of-the-art NMF algorithms, while also enjoying the same strong statistical optimality guarantees as the SDP. In our experiments, we observe that our algorithm achieves substantially smaller mis-clustering errors compared to the existing state-of-the-art.

#10 Small-scale proxies for large-scale Transformer training instabilities [PDF15] [Copy] [Kimi65]

Authors: Mitchell Wortsman ; Peter Liu ; Lechao Xiao ; Katie Everett ; Alexander Alemi ; Ben Adlam ; John Co-Reyes ; Izzeddin Gur ; Abhishek Kumar ; Roman Novak ; Jeffrey Pennington ; Jascha Sohl-Dickstein ; Kelvin Xu ; Jaehoon Lee ; Justin Gilmer ; Simon Kornblith

Teams that have trained large Transformer-based models have reported training instabilities at large scale that did not appear when training with the same hyperparameters at smaller scales. Although the causes of such instabilities are of scientific interest, the amount of resources required to reproduce them has made investigation difficult. In this work, we seek ways to reproduce and study training instability at smaller scales. First, we focus on two sources of training instability described in previous work: the growth of logits in attention layers (Dehghani et al., 2023) and divergence of the output logits from the log probabilities (Chowdhery et al., 2022). By measuring the relationship between learning rate and loss across scales, we show that these instabilities also appear in small models when training at high learning rates, and that mitigations previously employed at large scales are equally effective in this regime. This prompts us to investigate the extent to which other known optimizer and model interventions influence the sensitivity of the final loss to changes in the learning rate. To this end, we study methods such as warm-up, weight decay, and the MuParam (Yang et al., 2022), and combine techniques to train small models that achieve similar losses across orders of magnitude of learning rate variation. Finally, to conclude our exploration we study two cases where instabilities can be predicted before they emerge by examining the scaling behavior of model characteristics such as activation and gradient norms.

#11 Mastering Memory Tasks with World Models [PDF15] [Copy] [Kimi58]

Authors: Mohammad Reza Samsami ; Artem Zholus ; Janarthanan Rajendran ; Sarath Chandar

Current model-based reinforcement learning (MBRL) agents struggle with long-term dependencies. This limits their ability to effectively solve tasks involving extended time gaps between actions and outcomes, or tasks demanding the recalling of distant observations to inform current actions. To improve temporal coherence, we integrate a new family of state space models (SSMs) in world models of MBRL agents to present a new method, Recall to Imagine (R2I). This integration aims to enhance both long-term memory and long-horizon credit assignment. Through a diverse set of illustrative tasks, we systematically demonstrate that R2I establishes a new state-of-the-art performance in challenging memory and credit assignment RL tasks, such as Memory Maze, BSuite, and POPGym. At the same time, it upholds comparable performance in classic RL tasks, such as Atari and DMC, suggesting the generality of our method. We also show that R2I is faster than the state-of-the-art MBRL method, DreamerV3, resulting in faster wall-time convergence.

#12 Diffusion Model for Dense Matching [PDF29] [Copy] [Kimi81]

Authors: Jisu Nam ; Gyuseong Lee ; Seonwoo Kim ; Inès Hyeonsu Kim ; Hyoungwon Cho ; Seyeon Kim ; Seungryong Kim

The objective for establishing dense correspondence between paired images consists of two terms: a data term and a prior term. While conventional techniques focused on defining hand-designed prior terms, which are difficult to formulate, recent approaches have focused on learning the data term with deep neural networks without explicitly modeling the prior, assuming that the model itself has the capacity to learn an optimal prior from a large-scale dataset. The performance improvement was obvious, however, they often fail to address inherent ambiguities of matching, such as textureless regions, repetitive patterns, large displacements, or noises. To address this, we propose DiffMatch, a novel conditional diffusion-based framework designed to explicitly model both the data and prior terms for dense matching. This is accomplished by leveraging a conditional denoising diffusion model that explicitly takes matching cost and injects the prior within generative process. However, limited resolution of the diffusion model is a major hindrance. We address this with a cascaded pipeline, starting with a low-resolution model, followed by a super-resolution model that successively upsamples and incorporates finer details to the matching field. Our experimental results demonstrate significant performance improvements of our method over existing approaches, and the ablation studies validate our design choices along with the effectiveness of each component. The code and pretrained weights will be available.

#13 Multi-Source Diffusion Models for Simultaneous Music Generation and Separation [PDF14] [Copy] [Kimi36]

Authors: Giorgio Mariani ; Irene Tallini ; Emilian Postolache ; Michele Mancusi ; Luca Cosmo ; Emanuele Rodolà

In this work, we define a diffusion-based generative model capable of both music generation and source separation by learning the score of the joint probability density of sources sharing a context. Alongside the classic total inference tasks (i.e., generating a mixture, separating the sources), we also introduce and experiment on the partial generation task of source imputation, where we generate a subset of the sources given the others (e.g., play a piano track that goes well with the drums). Additionally, we introduce a novel inference method for the separation task based on Dirac likelihood functions. We train our model on Slakh2100, a standard dataset for musical source separation, provide qualitative results in the generation settings, and showcase competitive quantitative results in the source separation setting. Our method is the first example of a single model that can handle both generation and separation tasks, thus representing a step toward general audio models.

#14 LLMCarbon: Modeling the End-to-End Carbon Footprint of Large Language Models [PDF9] [Copy] [Kimi57]

Authors: Ahmad Faiz ; Sotaro Kaneda ; Ruhan Wang ; Rita Osi ; Prateek Sharma ; Fan Chen ; Lei Jiang

The carbon footprint of large language models (LLMs) is substantial, stemming from their training, inference, experimentation, and storage processes, encompassing both operational and embodied carbon emissions. Precisely assessing the carbon impact of emerging LLMs before their actual training, which involves substantial GPU usage, is crucial. Although many previous studies have reported the carbon footprint of LLM training, only one prior tool, mlco2, can predict the carbon footprint of new neural networks before their physical training. However, mlco2 exhibits several limitations. Firstly, it cannot extend its carbon footprint estimation to include dense or mixture-of-experts (MoE) LLMs. Secondly, mlco2 disregards essential architectural parameters of networks, such as parameter counts, leading to inflated projections. Thirdly, mlco2 focuses solely on GPUs, excluding TPUs and assuming uniform peak computing throughput across GPUs, resulting in imprecise carbon footprint estimations. Lastly, mlco2 cannot model the embodied carbon footprint of an LLM. To address these gaps, we present an end-to-end carbon footprint projection model, LLMCarbon, designed for both dense and MoE LLMs. Compared to mlco2, LLMCarbon greatly improves the estimation accuracy of the carbon footprint of various LLMs.

#15 Amortizing intractable inference in large language models [PDF20] [Copy] [Kimi59]

Authors: Edward Hu ; Moksh Jain ; Eric Elmoznino ; Younesse Kaddar ; Guillaume Lajoie ; Yoshua Bengio ; Nikolay Malkin

Autoregressive large language models (LLMs) compress knowledge from their training data through next-token conditional distributions. This limits tractable querying of this knowledge to start-to-end autoregressive sampling. However, many tasks of interest---including sequence continuation, infilling, and other forms of constrained generation---involve sampling from intractable posterior distributions. We address this limitation by using amortized Bayesian inference to sample from these intractable posteriors. Such amortization is algorithmically achieved by fine-tuning LLMs via diversity-seeking reinforcement learning algorithms: generative flow networks (GFlowNets). We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training and reward-maximizing policy optimization. As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem and demonstrate that our approach enables data-efficient adaptation of LLMs to tasks that require multi-step rationalization and tool use.

#16 Generalization in diffusion models arises from geometry-adaptive harmonic representation [PDF10] [Copy] [Kimi30]

Authors: Zahra Kadkhodaie ; Florentin Guth ; Eero Simoncelli ; Stéphane Mallat

High-quality samples generated with score-based reverse diffusion algorithms provide evidence that deep neural networks (DNN) trained for denoising can learn high-dimensional densities, despite the curse of dimensionality. However, recent reports of memorization of the training set raise the question of whether these networks are learning the ``true'' density of the data. Here, we show that two denoising DNNs trained on non-overlapping subsets of a dataset learn nearly the same score function, and thus the same density, with a surprisingly small number of training images. This strong generalization demonstrates the existence of powerful inductive biases in the DNN architecture and/or training algorithm. We analyze these, demonstrating that the denoiser performs a shrinkage operation in a basis adapted to the underlying image. Examination of these bases reveals oscillating harmonic structures along contours and in homogeneous image regions. We show that trained denoisers are inductively biased towards these geometry-adaptive harmonic representations by demonstrating that they arise even when the network is trained on image classes such as low-dimensional manifolds for which the harmonic basis is suboptimal. Additionally, we show that the denoising performance of the networks is near-optimal when trained on regular image classes for which the optimal basis is known to be geometry-adaptive and harmonic.

#17 Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN Expressiveness [PDF7] [Copy] [Kimi23]

Authors: Bohang Zhang ; Jingchu Gai ; Yiheng Du ; Qiwei Ye ; Di He ; Liwei Wang

Designing expressive Graph Neural Networks (GNNs) is a fundamental topic in the graph learning community. So far, GNN expressiveness has been primarily assessed via the Weisfeiler-Lehman (WL) hierarchy. However, such an expressivity measure has notable limitations: it is inherently coarse, qualitative, and may not well reflect practical requirements (e.g., the ability to encode substructures). In this paper, we introduce a novel framework for quantitatively studying the expressiveness of GNN architectures, addressing all the above limitations. Specifically, we identify a fundamental expressivity measure termed homomorphism expressivity, which quantifies the ability of GNN models to count graphs under homomorphism. Homomorphism expressivity offers a complete and practical assessment tool: the completeness enables direct expressivity comparisons between GNN models, while the practicality allows for understanding concrete GNN abilities such as subgraph counting. By examining four classes of prominent GNNs as case studies, we derive simple, unified, and elegant descriptions of their homomorphism expressivity for both invariant and equivariant settings. Our results provide novel insights into a series of previous work, unify the landscape of different subareas in the community, and settle several open questions. Empirically, extensive experiments on both synthetic and real-world tasks verify our theory, showing that the practical performance of GNN models aligns well with the proposed metric.

#18 On the Humanity of Conversational AI: Evaluating the Psychological Portrayal of LLMs [PDF9] [Copy] [Kimi37]

Authors: Jen-tse Huang ; Wenxuan Wang ; Eric John Li ; Man Ho LAM ; Shujie Ren ; Youliang Yuan ; Wenxiang Jiao ; Zhaopeng Tu ; Michael Lyu

Large Language Models (LLMs) have recently showcased their remarkable capacities, not only in natural language processing tasks but also across diverse domains such as clinical medicine, legal consultation, and education. LLMs become more than mere applications, evolving into assistants capable of addressing diverse user requests. This narrows the distinction between human beings and artificial intelligence agents, raising intriguing questions regarding the potential manifestation of personalities, temperaments, and emotions within LLMs. In this paper, we propose a framework, PPBench, for evaluating diverse psychological aspects of LLMs. Comprising thirteen scales commonly used in clinical psychology, PPBench further classifies these scales into four distinct categories: personality traits, interpersonal relationships, motivational tests, and emotional abilities. Our study examines five popular models, namely \texttt{text-davinci-003}, ChatGPT, GPT-4, LLaMA-2-7b, and LLaMA-2-13b. Additionally, we employ a jailbreak approach to bypass the safety alignment protocols and test the intrinsic natures of LLMs. We have made PPBench openly accessible via *\footnote{The link is hidden due to anonymity. For reviewers, please refer to the supplementary materials.}.

#19 Generative Modeling with Phase Stochastic Bridge [PDF11] [Copy] [Kimi39]

Authors: Tianrong Chen ; Jiatao Gu ; Laurent Dinh ; Evangelos Theodorou ; Joshua Susskind ; Shuangfei Zhai

Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling framework grounded in \textbf{phase space dynamics}, where a phase space is defined as {an augmented space encompassing both position and velocity.} Leveraging insights from Stochastic Optimal Control, we construct a path measure in the phase space that enables efficient sampling. {In contrast to DMs, our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.} This early prediction sets the stage for efficient data generation by leveraging additional velocity information along the trajectory. On standard image generation benchmarks, our model yields favorable performance over baselines in the regime of small Number of Function Evaluations (NFEs). Furthermore, our approach rivals the performance of diffusion models equipped with efficient sampling techniques, underscoring its potential as a new tool generative modeling.

#20 LRM: Large Reconstruction Model for Single Image to 3D [PDF19] [Copy] [Kimi21]

Authors: Yicong Hong ; Kai Zhang ; Jiuxiang Gu ; Sai Bi ; Yang Zhou ; Difan Liu ; Feng Liu ; Kalyan Sunkavalli ; Trung Bui ; Hao Tan

We propose the first Large Reconstruction Model (LRM) that predicts the 3D model of an object from a single input image within just 5 seconds. In contrast to many previous methods that are trained on small-scale datasets such as ShapeNet in a category-specific fashion, LRM adopts a highly scalable transformer-based architecture with 500 million learnable parameters to directly predict a neural radiance field (NeRF) from the input image. We train our model in an end-to-end manner on massive multi-view data containing around 1 million objects, including both synthetic renderings from Objaverse and real captures from MVImgNet. This combination of a high-capacity model and large-scale training data empowers our model to be highly generalizable and produce high-quality 3D reconstructions from various testing inputs including real-world in-the-wild captures and images from generative models. Video demos and interactable 3D meshes can be found on this anonymous website: https://scalei3d.github.io/LRM.

#21 Learning Interactive Real-World Simulators [PDF19] [Copy] [Kimi46]

Authors: Sherry Yang ; Yilun Du ; Seyed Ghasemipour ; Jonathan Tompson ; Leslie Kaelbling ; Dale Schuurmans ; Pieter Abbeel

Generative models trained on internet data have revolutionized how text, image, and video content can be created. Perhaps the next milestone for generative models is to simulate realistic experience in response to actions taken by humans, robots, and other interactive agents. Applications of a real-world simulator range from controllable content creation in games and movies, to training embodied agents purely in simulation that can be directly deployed in the real world. We explore the possibility of learning a universal simulator (UniSim) of real-world interaction through generative modeling. We first make the important observation that natural datasets available for learning a real-world simulator are often rich along different axes (e.g., abundant objects in image data, densely sampled actions in robotics data, and diverse movements in navigation data). With careful orchestration of diverse datasets, each providing a different aspect of the overall experience, UniSim can emulate how humans and agents interact with the world by simulating the visual outcome of both high-level instructions such as “open the drawer” and low-level controls such as “move by x,y” from otherwise static scenes and objects. There are numerous use cases for such a real-world simulator. As an example, we use UniSim to train both high-level vision-language planners and low-level reinforcement learning policies, each of which exhibit zero-shot real-world transfer after training purely in a learned real-world simulator. We also show that other types of intelligence such as video captioning models can benefit from training with simulated experience in UniSim, opening up even wider applications.

#22 How I Warped Your Noise: a Temporally-Correlated Noise Prior for Diffusion Models [PDF17] [Copy] [Kimi39]

Authors: Pascal Chang ; Jingwei Tang ; Markus Gross ; Vinicius Da Costa De Azevedo

Video editing and generation methods often rely on pre-trained image-based diffusion models. During the diffusion process, however, the reliance on rudimentary noise sampling techniques that do not preserve correlations present in subsequent frames of a video is detrimental to the quality of the results. This either produces high-frequency flickering, or texture-sticking artifacts that are not amenable to post-processing. With this in mind, we propose a novel method for preserving temporal correlations in a sequence of noise samples. This approach is materialized by a novel noise representation, dubbed $\int$-noise (integral noise), that reinterprets individual noise samples as a continuously integrated noise field: pixel values do not represent discrete values, but are rather the integral of an underlying infinite-resolution noise over the pixel area. Additionally, we propose a carefully tailored transport method that uses $\int$-noise to accurately advect noise samples over a sequence of frames, maximizing the correlation between different frames while also preserving the noise properties. Our results demonstrate that the proposed $\int$-noise can be used for a variety of tasks, such as video restoration, surrogate rendering, and conditional video generation.

#23 ReLU Strikes Back: Exploiting Activation Sparsity in Large Language Models [PDF8] [Copy] [Kimi47]

Authors: Seyed Iman Mirzadeh ; Keivan Alizadeh-Vahid ; Sachin Mehta ; Carlo C del Mundo ; Oncel Tuzel ; Golnoosh Samei ; Mohammad Rastegari ; Mehrdad Farajtabar

Large Language Models (LLMs) with billions of parameters have drastically transformed AI applications. However, their demanding computation during inference has raised significant challenges for deployment on resource-constrained devices. Despite recent trends favoring alternative activation functions such as GELU or SiLU, known for increased computation, this study strongly advocates for reinstating ReLU activation in LLMs. We demonstrate that using the ReLU activation function has a negligible impact on convergence and performance while significantly reducing computation and weight transfer. This reduction is particularly valuable during the memory-bound inference step, where efficiency is paramount. Exploring sparsity patterns in ReLU-based LLMs, we unveil the reutilization of activated neurons for generating new tokens and leveraging these insights, we propose practical strategies to substantially reduce LLM inference computation up to three times, using ReLU activations with minimal performance trade-offs.

#24 Pre-Training Goal-based Models for Sample-Efficient Reinforcement Learning [PDF6] [Copy] [Kimi26]

Authors: Haoqi Yuan ; Zhancun Mu ; Feiyang Xie ; Zongqing Lu

Pre-training on task-agnostic large datasets is a promising approach for enhancing the sample efficiency of reinforcement learning (RL) in solving complex tasks. We present PTGM, a novel method that pre-trains goal-based models to augment RL by providing temporal abstractions and behavior regularization. PTGM involves pre-training a low-level, goal-conditioned policy and training a high-level policy to generate goals for subsequent RL tasks. To address the challenges posed by the high-dimensional goal space, while simultaneously maintaining the agent's capability to accomplish various skills, we propose clustering goals in the dataset to form a discrete high-level action space. Additionally, we introduce a pre-trained goal prior model to regularize the behavior of the high-level policy in RL, enhancing sample efficiency and learning stability. Experimental results in a robotic simulation environment and the challenging open-world environment of Minecraft demonstrate PTGM’s superiority in sample efficiency and task performance compared to baselines. Moreover, PTGM exemplifies enhanced interpretability and generalization of the acquired low-level skills.

#25 Monte Carlo guided Denoising Diffusion models for Bayesian linear inverse problems. [PDF7] [Copy] [Kimi36]

Authors: Gabriel Cardoso ; Yazid Janati el idrissi ; Eric Moulines ; Sylvain Le Corff

Ill-posed linear inverse problems arise frequently in various applications, from computational photography to medical imaging.A recent line of research exploits Bayesian inference with informative priors to handle the ill-posedness of such problems.Amongst such priors, score-based generative models (SGM) have recently been successfully applied to several different inverse problems.In this study, we exploit the particular structure of the prior defined by the SGM to define a sequence of intermediate linear inverse problems. As the noise level decreases, the posteriors of these inverse problems get closer to the target posterior of the original inverse problem. To sample from this sequence of posteriors, we propose the use of Sequential Monte Carlo (SMC) methods.The proposed algorithm, \algo, is shown to be theoretically grounded and we provide numerical simulations showing that it outperforms competing baselines when dealing with ill-posed inverse problems in a Bayesian setting.