ICLR.2024 - Spotlight

| Total: 366

#1 SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation [PDF31] [Copy] [Kimi97] [REL]

Authors: Chongyu Fan ; Jiancheng Liu ; Yihua Zhang ; Dennis Wei ; Eric Wong ; Sijia Liu

With evolving data regulations, machine unlearning (MU) has become an important tool for fostering trust and safety in today's AI models. However, existing MU methods focusing on data and/or weight perspectives often suffer limitations in unlearning accuracy, stability, and cross-domain applicability. To address these challenges, we introduce the concept of 'weight saliency' for MU, drawing parallels with input saliency in model explanation. This innovation directs MU's attention toward specific model weights rather than the entire model, improving effectiveness and efficiency. The resultant method that we call saliency unlearning (SalUn) narrows the performance gap with 'exact' unlearning (model retraining from scratch after removing the forgetting data points). To the best of our knowledge, SalUn is the first principled MU approach that can effectively erase the influence of forgetting data, classes, or concepts in both image classification and generation tasks. As highlighted below, For example, SalUn yields a stability advantage in high-variance random data forgetting, e.g., with a 0.2% gap compared to exact unlearning on the CIFAR-10 dataset. Moreover, in preventing conditional diffusion models from generating harmful images, SalUn achieves nearly 100% unlearning accuracy, outperforming current state-of-the-art baselines like Erased Stable Diffusion and Forget-Me-Not. Codes are available at https://github.com/OPTML-Group/Unlearn-Saliency.**WARNING**: This paper contains model outputs that may be offensive in nature.

#2 Dictionary Contrastive Forward Learning via Adaptive Label Embeddings [PDF23] [Copy] [Kimi48] [REL]

Authors: Suhwan Choi ; Myeongho Jeon ; Yeonjung Hwang ; Jeonglyul Oh ; Sungjun Lim ; Joonseok Lee ; Myungjoo Kang

While backpropagation (BP) has achieved widespread success in deep learning, it faces two prominent challenges; that is, computational inefficiency and biological implausibility. These issues arise from the requirements of feedback weight symmetry and the forward/backward pass locking. "Forward learning" (FL), an emerging alternative, updates each layer's weights during the forward pass, eliminating the need for backward error signal propagation to address these concerns. Recent approaches have leveraged contrastive learning as a specialized tool for this scenario. However, it still exhibits suboptimal performance in comparison to BP. Our investigation suggests that existing contrastive FL methods, which assess similarities among local features, are susceptible to the inclusion of task-irrelevant information. In response to this, we propose a straightforward FL objective within a contrastive learning framework, with the goal of enhancing the similarity between local features and label embeddings, i.e., Dictionary Contrastive Forward Learning (DC-FL). Consequently, our objective yields substantial performance improvements, outperforming other state-of-the-art forward learning techniques. Notably, our method closely approaches the performance achieved by BP while concurrently preserving superior memory efficiency.

#3 De novo Protein Design Using Geometric Vector Field Networks [PDF8] [Copy] [Kimi26] [REL]

Authors: weian mao ; Zheng Sun ; Muzhi Zhu ; Shuaike Shen ; Lin Yuanbo Wu ; Hao Chen ; Chunhua Shen

Advances like protein diffusion have marked revolutionary progress in $\textit{de novo}$ protein design, a central topic in life science. These methods typically depend on protein structure encoders to model residue backbone frames, where atoms do not exist. Most prior encoders rely on atom-wise features, such as angles and distances between atoms, which are not available in this context. Only a few basic encoders, like IPA, have been proposed for this scenario, exposing the frame modeling as a bottleneck. In this work, we introduce the Vector Field Network (VFN), that enables network layers to perform learnable vector computations between coordinates of frame-anchored virtual atoms, thus achieving a higher capability for modeling frames. The vector computation operates in a manner similar to a linear layer, with each input channel receiving 3D virtual atom coordinates instead of scalar values. The multiple feature vectors output by the vector computation are then used to update the residue representations and virtual atom coordinates via attention aggregation. Remarkably, VFN also excels in modeling both frames and atoms, as the real atoms can be treated as the virtual atoms for modeling, positioning VFN as a potential $\textit{universal encoder}$. In protein diffusion (frame modeling), VFN exhibits a impressive performance advantage over IPA, excelling in terms of both designability ($\textbf{67.04}$\% vs. 53.58\%) and diversity ($\textbf{66.54}$\% vs. 51.98\%). In inverse folding(frame and atom modeling), VFN outperforms the previous SoTA model, PiFold ($\textbf{54.7}$\% vs. 51.66\%), on sequence recovery rate; we also propose a method of equipping VFN with the ESM model, which significantly surpasses the previous ESM-based SoTA ($\textbf{62.67}$\% vs. 55.65\%), LM-Design, by a substantial margin.

#4 SpikePoint: An Efficient Point-based Spiking Neural Network for Event Cameras Action Recognition [PDF13] [Copy] [Kimi23] [REL]

Authors: Hongwei Ren ; Yue ZHOU ; Haotian FU ; Yulong Huang ; Xiaopeng LIN ; Jie Song ; Bojun Cheng

Event cameras are bio-inspired sensors that respond to local changes in light intensity and feature low latency, high energy efficiency, and high dynamic range. Meanwhile, Spiking Neural Networks (SNNs) have gained significant attention due to their remarkable efficiency and fault tolerance. By synergistically harnessing the energy efficiency inherent in event cameras and the spike-based processing capabilities of SNNs, their integration could enable ultra-low-power application scenarios, such as action recognition tasks. However, existing approaches often entail converting asynchronous events into conventional frames, leading to additional data mapping efforts and a loss of sparsity, contradicting the design concept of SNNs and event cameras. To address this challenge, we propose SpikePoint, a novel end-to-end point-based SNN architecture. SpikePoint excels at processing sparse event cloud data, effectively extracting both global and local features through a singular-stage structure. Leveraging the surrogate training method, SpikePoint achieves high accuracy with few parameters and maintains low power consumption, specifically employing the identity mapping feature extractor on diverse datasets. SpikePoint achieves state-of-the-art (SOTA) performance on four event-based action recognition datasets using only 16 timesteps, surpassing other SNN methods. Moreover, it also achieves SOTA performance across all methods on three datasets, utilizing approximately 0.3 % of the parameters and 0.5 % of power consumption employed by artificial neural networks (ANNs). These results emphasize the significance of Point Cloud and pave the way for many ultra-low-power event-based data processing applications.

#5 Finite-State Autoregressive Entropy Coding for Efficient Learned Lossless Compression [PDF16] [Copy] [Kimi28] [REL]

Authors: Yufeng Zhang ; Hang Yu ; Jianguo Li ; Weiyao Lin

Learned lossless data compression has garnered significant attention recently due to its superior compression ratios compared to traditional compressors. However, the computational efficiency of these models jeopardizes their practicality. This paper proposes a novel system for improving the compression ratio while maintaining computational efficiency for learned lossless data compression. Our approach incorporates two essential innovations. First, we propose the Finite-State AutoRegressive (FSAR) entropy coder, an efficient autoregressive Markov model based entropy coder that utilizes a lookup table to expedite autoregressive entropy coding. Next, we present a Straight-Through Hardmax Quantization (STHQ) scheme to enhance the optimization of discrete latent space. Our experiments show that the proposed lossless compression method could improve the compression ratio by up to 6\% compared to the baseline, with negligible extra computational time. Our work provides valuable insights into enhancing the computational efficiency of learned lossless data compression, which can have practical applications in various fields. Code will be available publicly after the paper is accepted.

#6 Deep Geodesic Canonical Correlation Analysis for Covariance-Based Neuroimaging Data [PDF8] [Copy] [Kimi13] [REL]

Authors: Ce Ju ; Reinmar Kobler ; Liyao Tang ; Cuntai Guan ; Motoaki Kawanabe

In human neuroimaging, multi-modal imaging techniques are frequently combined to enhance our comprehension of whole-brain dynamics and improve diagnosis in clinical practice. Modalities like electroencephalography and functional magnetic resonance imaging provide distinct views of brain dynamics due to diametral spatiotemporal sensitivities and underlying neurophysiological coupling mechanisms. These distinct views pose a considerable challenge to learning a shared representation space, especially when dealing with covariance-based data characterized by their geometric structure. To capitalize on the geometric structure, we introduce a measure called geodesic correlation, which expands traditional correlation consistency to covariance-based data on the symmetric positive definite (SPD) manifold. This measure is derived from classical canonical correlation analysis and serves to evaluate the consistency of latent representations obtained from paired views. For multi-view/-modal, self-supervised learning where one or both latent views are SPD, we propose an innovative geometric deep learning framework termed DeepGeoCCA. Its primary objective is to enhance the geodesic correlation of unlabeled, paired data, thereby generating novel representations while retaining the geometric structures. In simulations and experiments with multi-view and multi-modal human neuroimaging data, we find that DeepGeoCCA learns latent representations with high geodesic consistency for unseen data while retaining relevant information for downstream tasks.

#7 On Bias-Variance Alignment in Deep Models [PDF14] [Copy] [Kimi32] [REL]

Authors: Lin Chen ; Michal Lukasik ; Wittawat Jitkrittum ; Chong You ; Sanjiv Kumar

Classical wisdom in machine learning holds that the generalization error can be decomposed into bias and variance, and these two terms exhibit a \emph{trade-off}. However, in this paper, we show that for an ensemble of deep learning based classification models, bias and variance are \emph{aligned} at a sample level, where squared bias is approximately \emph{equal} to variance for correctly classified sample points. We present empirical evidence confirming this phenomenon in a variety of deep learning models and datasets. Moreover, we study this phenomenon from two theoretical perspectives: calibration and neural collapse. We first show theoretically that under the assumption that the models are well calibrated, we can observe the bias-variance alignment. Second, starting from the picture provided by the neural collapse theory, we show an approximate correlation between bias and variance.

#8 Graphical Multioutput Gaussian Process with Attention [PDF5] [Copy] [Kimi15] [REL]

Authors: Yijue Dai ; Wenzhong Yan ; Feng Yin

Integrating information while recognizing dependence from multiple data sources and enhancing the predictive performance of the multi-output regression are challenging tasks. Multioutput Gaussian Process (MOGP) methods offer outstanding solutions with tractable predictions and uncertainty quantification.However, their practical applications are hindered by high computational complexity and storage demand. Additionally, there exist model mismatches in existing MOGP models when dealing with non-Gaussian data. To improve the model representation ability in terms of flexibility, optimality, and scalability,this paper introduces a novel multi-output regression framework, termed Graphical MOGP (GMOGP), which is empowered by:(i) generating flexible Gaussian process priors consolidated from identified parents, (ii) providing dependent processes with attention-based graphical representations, and (iii) achieving Pareto optimal solutions via a distributed learning framework. Numerical results confirm that the proposed GMOGP significantly outperforms state-of-the-art MOGP alternatives in predictive performance, as well as in time and memory efficiency, across various synthetic and real datasets.Our code and datasets are available at https://anonymous.4open.science/r/GMOGP-5ED3/.

#9 MT-Ranker: Reference-free machine translation evaluation by inter-system ranking [PDF8] [Copy] [Kimi15] [REL]

Authors: Ibraheem Muhammad Moosa ; Rui Zhang ; Wenpeng Yin

Traditionally, Machine Translation (MT) Evaluation has been treated as a regression problem -- producing an absolute translation-quality score. This approach has two limitations: i) the scores lack interpretability, and human annotators struggle with giving consistent scores; ii) most scoring methods are based on (reference, translation) pairs, limiting their applicability in real-world scenarios where references are absent. In practice, we often care about whether a new MT system is better or worse than some competitors. In addition, reference-free MT evaluation is increasingly practical and necessary. Unfortunately, these two practical considerations have yet to be jointly explored. In this work, we formulate the reference-free MT evaluation into a pairwise ranking problem. Given the source sentence and a pair of translations, our system predicts which translation is better. In addition to proposing this new formulation, we further show that this new paradigm can demonstrate superior correlation with human judgments by merely using indirect supervision from natural language inference and weak supervision from our synthetic data. In the context of reference-free evaluation, MT-Ranker, trained without any human annotations, achieves state-of-the-art results on the WMT Shared Metrics Task benchmarks DARR20, MQM20, and MQM21. On a more challenging benchmark, ACES, which contains fine-grained evaluation criteria such as addition, omission, and mistranslation errors, MT-Ranker marks state-of-the-art against reference-free as well as reference-based baselines.

#10 Provable Offline Preference-Based Reinforcement Learning [PDF6] [Copy] [Kimi16] [REL]

Authors: Wenhao Zhan ; Masatoshi Uehara ; Nathan Kallus ; Jason Lee ; Wen Sun

In this paper, we investigate the problem of offline Preference-based Reinforcement Learning (PbRL) with human feedback where feedback is available in the form of preference between trajectory pairs rather than explicit rewards. Our proposed algorithm consists of two main steps: (1) estimate the implicit reward using Maximum Likelihood Estimation (MLE) with general function approximation from offline data and (2) solve a distributionally robust planning problem over a confidence set around the MLE. We consider the general reward setting where the reward can be defined over the whole trajectory and provide a novel guarantee that allows us to learn any target policy with a polynomial number of samples, as long as the target policy is covered by the offline data. This guarantee is the first of its kind with general function approximation. To measure the coverage of the target policy, we introduce a new single-policy concentrability coefficient, which can be upper bounded by the per-trajectory concentrability coefficient. We also establish lower bounds that highlight the necessity of such concentrability and the difference from standard RL, where state-action-wise rewards are directly observed. We further extend and analyze our algorithm when the feedback is given over action pairs.

#11 Provable Reward-Agnostic Preference-Based Reinforcement Learning [PDF6] [Copy] [Kimi12] [REL]

Authors: Wenhao Zhan ; Masatoshi Uehara ; Wen Sun ; Jason Lee

Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories, rather than explicit reward signals. While PbRL has demonstrated practical success in fine-tuning language models, existing theoretical work focuses on regret minimization and fails to capture most of the practical frameworks. In this study, we fill in such a gap between theoretical PbRL and practical algorithms by proposing a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired before collecting any human feedback. Theoretical analysis demonstrates that our algorithm requires less human feedback for learning the optimal policy under preference-based models with linear parameterization and unknown transitions, compared to the existing theoretical literature. Specifically, our framework can incorporate linear and low-rank MDPs with efficient sample complexity. Additionally, we investigate reward-agnostic RL with action-based comparison feedback and introduce an efficient querying algorithm tailored to this scenario.

#12 Hybrid Directional Graph Neural Network for Molecules [PDF10] [Copy] [Kimi14] [REL]

Authors: Junyi An ; Chao Qu ; Zhipeng Zhou ; Fenglei Cao ; Xu Yinghui ; Yuan Qi ; Furao Shen

Equivariant message passing neural networks have emerged as the prevailing approach for predicting chemical properties of molecules due to their ability to leverage translation and rotation symmetries, resulting in a strong inductive bias. However, the equivariant operations in each layer can impose excessive constraints on the function form and network flexibility. To address these challenges, we introduce a novel network called the Hybrid Directional Graph Neural Network (HDGNN), which effectively combines strictly equivariant operations with learnable modules. We evaluate the performance of HDGNN on the QM9 dataset and the IS2RE dataset of OC20, demonstrating its state-of-the-art performance on several tasks and competitive performance on others. Our code is anonymously released on https://github.com/AnonymousACode/HDGNN.

#13 Quasi-Monte Carlo for 3D Sliced Wasserstein [PDF1] [Copy] [Kimi6] [REL]

Authors: Khai Nguyen ; Nicola Bariletto ; Nhat Ho

Monte Carlo (MC) integration has been employed as the standard approximation method for the Sliced Wasserstein (SW) distance, whose analytical expression involves an intractable expectation. However, MC integration is not optimal in terms of absolute approximation error. To provide a better class of empirical SW, we propose quasi-sliced Wasserstein (QSW) approximations that rely on Quasi-Monte Carlo (QMC) methods. For a comprehensive investigation of QMC for SW, we focus on the 3D setting, specifically computing the SW between probability measures in three dimensions. In greater detail, we empirically evaluate various methods to construct QMC point sets on the 3D unit-hypersphere, including the Gaussian-based and equal area mappings, generalized spiral points, and optimizing discrepancy energies. Furthermore, to obtain an unbiased estimator for stochastic optimization, we extend QSW to Randomized Quasi-Sliced Wasserstein (RQSW) by introducing randomness in the discussed point sets. Theoretically, we prove the asymptotic convergence of QSW and the unbiasedness of RQSW. Finally, we conduct experiments on various 3D tasks, such as point-cloud comparison, point-cloud interpolation, image style transfer, and training deep point-cloud autoencoders, to demonstrate the favorable performance of the proposed QSW and RQSW variants.

#14 Adding 3D Geometry Control to Diffusion Models [PDF14] [Copy] [Kimi18] [REL]

Authors: Wufei Ma ; Qihao Liu ; Jiahao Wang ; Xiaoding Yuan ; Angtian Wang ; Yi Zhang ; Zihao Xiao ; Guofeng Zhang ; Beijia Lu ; Ruxiao Duan ; Yongrui Qi ; Adam Kortylewski ; Yaoyao Liu ; Alan Yuille

Diffusion models have emerged as a powerful method of generative modeling across a range of fields, capable of producing stunning photo-realistic images from natural language descriptions. However, these models lack explicit control over the 3D structure in the generated images. Consequently, this hinders our ability to obtain detailed 3D annotations for the generated images or to craft instances with specific poses and distances. In this paper, we propose a simple yet effective method that incorporates 3D geometry control into diffusion models. Our method exploits ControlNet, which extends diffusion models by using visual prompts in addition to text prompts. We generate images of the 3D objects taken from 3D shape repositories (e.g., ShapeNet and Objaverse), render them from a variety of poses and viewing directions, compute the edge maps of the rendered images, and use these edge maps as visual prompts to generate realistic images. With explicit 3D geometry control, we can easily change the 3D structures of the objects in the generated images and obtain ground-truth 3D annotations automatically. This allows us to improve a wide range of vision tasks, e.g., classification and 3D pose estimation, in both in-distribution (ID) and out-of-distribution (OOD) settings. We demonstrate the effectiveness of our method through extensive experiments on ImageNet-100, ImageNet-R, PASCAL3D+, ObjectNet3D, and OOD-CV. The results show that our method significantly outperforms existing methods across multiple benchmarks, e.g., 3.8 percentage points on ImageNet-100 using DeiT-B and 3.5 percentage points on PASCAL3D+ & ObjectNet3D using NeMo.

#15 PolyGCL: GRAPH CONTRASTIVE LEARNING via Learnable Spectral Polynomial Filters [PDF3] [Copy] [Kimi12] [REL]

Authors: Jingyu Chen ; Runlin Lei ; Zhewei Wei

Recently, Graph Contrastive Learning (GCL) has achieved significantly superior performance in self-supervised graph representation learning. However, the existing GCL technique has inherent smooth characteristics because of its low-pass GNN encoder and objective based on homophily assumption, which poses a challenge when applying it to heterophilic graphs.In supervised learning tasks, spectral GNNs with polynomial approximation excel in both homophilic and heterophilic settings by adaptively fitting graph filters of arbitrary shapes. Yet, their applications in unsupervised learning are rarely explored.Based on the above analysis, a natural question arises: \textit{Can we incorporate the excellent properties of spectral polynomial filters into graph contrastive learning?}In this paper, we address the question by studying the necessity of introducing high-pass information for heterophily from a spectral perspective.We propose PolyGCL, a GCL pipeline that utilizes polynomial filters to achieve contrastive learning between the low-pass and high-pass views.Specifically, PolyGCL utilizes polynomials with learnable filter functions to generate different spectral views and an objective that incorporates high-pass information through a linear combination. We theoretically prove that PolyGCL outperforms previous GCL paradigms when applied to graphs with varying levels of homophily.We conduct extensive experiments on both synthetic and real-world datasets, which demonstrate the promising performance of PolyGCL on homophilic and heterophilic graphs.

#16 Sample-Efficient Quality-Diversity by Cooperative Coevolution [PDF6] [Copy] [Kimi12] [REL]

Authors: Ke Xue ; Ren-Jian Wang ; Pengyi Li ; Dong Li ; Jianye HAO ; Chao Qian

Quality-Diversity (QD) algorithms, as a subset of evolutionary algorithms, have emerged as a powerful optimization paradigm with the aim of generating a set of high-quality and diverse solutions. Although QD has demonstrated competitive performance in reinforcement learning, its low sample efficiency remains a significant impediment for real-world applications. Recent research has primarily focused on augmenting sample efficiency by refining selection and variation operators of QD. However, one of the less considered yet crucial factors is the inherently large-scale issue of the QD optimization problem. In this paper, we propose a novel Cooperative Coevolution QD (CCQD) framework, which decomposes a policy network naturally into two types of layers, corresponding to representation and decision respectively, and thus simplifies the problem significantly. The resulting two (representation and decision) subpopulations are coevolved cooperatively. CCQD can be implemented with different selection and variation operators. Experiments on several popular tasks within the QDAX suite demonstrate that an instantiation of CCQD achieves approximately a 200% improvement in sample efficiency.

#17 Unified Human-Scene Interaction via Prompted Chain-of-Contacts [PDF7] [Copy] [Kimi16] [REL]

Authors: Zeqi Xiao ; Tai Wang ; Jingbo Wang ; Jinkun Cao ; Wenwei Zhang ; Bo DAI ; Dahua Lin ; Jiangmiao Pang

Human-Scene Interaction (HSI) is a vital component of fields like embodied AI and virtual reality. Despite advancements in motion quality and physical plausibility, two pivotal factors, versatile interaction control and the development of a user-friendly interface, require further exploration before the practical application of HSI. This paper presents a unified HSI framework, UniHSI, which supports unified control of diverse interactions through language commands. This framework is built upon the definition of interaction as Chain of Contacts (CoC): steps of human joint-object part pairs, which is inspired by the strong correlation between interaction types and human-object contact regions.Based on the definition, UniHSI constitutes a Large Language Model (LLM) Planner to translate language prompts into task plans in the form of CoC, and a Unified Controller that turns CoC into uniform task execution. To facilitate training and evaluation, we collect a new dataset named ScenePlan that encompasses thousands of task plans generated by LLMs based on diverse scenarios. Comprehensive experiments demonstrate the effectiveness of our framework in versatile task execution and generalizability to real scanned scenes.

#18 TorchRL: A data-driven decision-making library for PyTorch [PDF12] [Copy] [Kimi20] [REL]

Authors: Albert Bou ; Matteo Bettini ; Sebastian Dittert ; Vikash Kumar ; Shagun Sodhani ; Xiaomeng Yang ; Gianni De Fabritiis ; Vincent Moens

PyTorch has ascended as a premier machine learning framework, yet it lacks a native and comprehensive library for decision and control tasks suitable for large development teams dealing with complex real-world data and environments. To address this issue, we propose TorchRL, a generalistic control library for PyTorch that provides well-integrated, yet standalone components. We introduce a new and flexible PyTorch primitive, the TensorDict, which facilitates streamlined algorithm development across the many branches of Reinforcement Learning (RL) and control. We provide a detailed description of the building blocks and an extensive overview of the library across domains and tasks. Finally, we experimentally demonstrate its reliability and flexibility, and show comparative benchmarks to demonstrate its computational efficiency. TorchRL fosters long-term support and is publicly available on GitHub for greater reproducibility and collaboration within the research community. The code is open-sourced on GitHub.

#19 Impact of Computation in Integral Reinforcement Learning for Continuous-Time Control [PDF1] [Copy] [Kimi9] [REL]

Authors: Wenhan Cao ; Wei Pan

Integral reinforcement learning (IntRL) demands the precise computation of the utility function's integral at its policy evaluation (PEV) stage. This is achieved through quadrature rules, which are weighted sums of utility functions evaluated from state samples obtained in discrete time. Our research reveals a critical yet underexplored phenomenon: the choice of the computational method -- in this case, the quadrature rule -- can significantly impact control performance. This impact is traced back to the fact that computational errors introduced in the PEV stage can affect the policy iteration's convergence behavior, which in turn affects the learned controller. To elucidate how computation impacts control, we draw a parallel between IntRL's policy iteration and Newton's method applied to the Hamilton-Jacobi-Bellman equation. In this light, computational error in PEV manifests as an extra error term in each iteration of Newton's method, with its upper bound proportional to the computational error. Further, we demonstrate that when the utility function resides in a reproducing kernel Hilbert space (RKHS), the optimal quadrature is achievable by employing Bayesian quadrature with the RKHS-inducing kernel function. We prove that the local convergence rates for IntRL using the trapezoidal rule and Bayesian quadrature with a Matérn kernel to be $O(N^{-2})$ and $O(N^{-b})$, where $N$ is the number of evenly-spaced samples and $b$ is the Matérn kernel's smoothness parameter. These theoretical findings are finally validated by two canonical control tasks.

#20 Nemesis: Normalizing the soft-prompt vectors of vision-language models [PDF6] [Copy] [Kimi13] [REL]

Authors: Shuai Fu ; Xiequn Wang ; Qiushi Huang ; Yu Zhang

With the prevalence of large-scale pretrained vision-language models (VLMs), such as CLIP, soft-prompt tuning has become a popular method for adapting these models to various downstream tasks. However, few works delve into the inherent properties of learnable soft-prompt vectors, specifically the impact of their norms to the performance of VLMs. This motivates us to pose an unexplored research question: ``Do we need to normalize the soft prompts in VLMs?'' To fill this research gap, we first uncover a phenomenon, called the $\textbf{Low-Norm Effect}$ by performing extensive corruption experiments, suggesting that reducing the norms of certain learned prompts occasionally enhances the performance of VLMs, while increasing them often degrades it. To utilize this effect, we propose a novel method named $\textbf{N}$ormalizing th$\textbf{e}$ soft-pro$\textbf{m}$pt v$\textbf{e}$ctors of vi$\textbf{si}$on-language model$\textbf{s}$ ($\textbf{Nemesis}$) to normalize soft-prompt vectors in VLMs. To the best of our knowledge, our work is the first to systematically investigate the role of norms of soft-prompt vector in VLMs, offering valuable insights for future research in soft-prompt tuning.

#21 Input-gradient space particle inference for neural network ensembles [PDF3] [Copy] [Kimi12] [REL]

Authors: Trung Trinh ; Markus Heinonen ; Luigi Acerbi ; Samuel Kaski

Deep Ensembles (DEs) demonstrate improved accuracy, calibration and robustness to perturbations over single neural networks partly due to their functional diversity. Particle-based variational inference (ParVI) methods enhance diversity by formalizing a repulsion term based on a network similarity kernel. However, weight-space repulsion is inefficient due to over-parameterization, while direct function-space repulsion has been found to produce little improvement over DEs. To sidestep these difficulties, we propose First-order Repulsive Deep Ensemble (FoRDE), an ensemble learning method based on ParVI, which performs repulsion in the space of first-order input gradients. As input gradients uniquely characterize a function up to translation and are much smaller in dimension than the weights, this method guarantees that ensemble members are functionally different. Intuitively, diversifying the input gradients encourages each network to learn different features, which is expected to improve the robustness of an ensemble. Experiments on image classification datasets and transfer learning tasks show that FoRDE significantly outperforms the gold-standard DEs and other ensemble methods in accuracy and calibration under covariate shift due to input perturbations.

#22 GTMGC: Using Graph Transformer to Predict Molecule’s Ground-State Conformation [PDF10] [Copy] [Kimi13] [REL]

Authors: Guikun Xu ; Yongquan Jiang ; PengChuan Lei ; Yan Yang ; Jim Chen

The ground-state conformation of a molecule is often decisive for its properties. However, experimental or computational methods, such as density functional theory (DFT), are time-consuming and labor-intensive for obtaining this conformation. Deep learning (DL) based molecular representation learning (MRL) has made significant advancements in molecular modeling and has achieved remarkable results in various tasks. Consequently, it has emerged as a promising approach for directly predicting the ground-state conformation of molecules. In this regard, we introduce GTMGC, a novel network based on Graph-Transformer (GT) that seamlessly predicts the spatial configuration of molecules in a 3D space from their 2D topological architecture in an end-to-end manner. Moreover, we propose a novel self-attention mechanism called Molecule Structural Residual Self-Attention (MSRSA) for molecular structure modeling. This mechanism not only guarantees high model performance and easy implementation but also lends itself well to other molecular modeling tasks. Our method has been evaluated on the Molecule3D benchmark dataset and the QM9 dataset. Experimental results demonstrate that our approach achieves remarkable performance and outperforms current state-of-the-art methods as well as the widely used open-source software RDkit.

#23 Idempotence and Perceptual Image Compression [PDF5] [Copy] [Kimi10] [REL]

Authors: Tongda Xu ; Ziran Zhu ; Dailan He ; Yanghao Li ; Lina Guo ; Yuanyuan Wang ; Zhe Wang ; Hongwei Qin ; Yan Wang ; Jingjing Liu ; Ya-Qin Zhang

Idempotence is the stability of image codec to re-compression. At the first glance, it is unrelated to perceptual image compression. However, we find that theoretically: 1) Conditional generative model-based perceptual codec satisfies idempotence; 2) Unconditional generative model with idempotence constraint is equivalent to conditional generative codec. Based on this newfound equivalence, we propose a new paradigm of perceptual image codec by inverting unconditional generative model with idempotence constraints. Our codec is theoretically equivalent to conditional generative codec, and it does not require training new models. Instead, it only requires a pre-trained mean-square-error codec and unconditional generative model. Empirically, we show that our proposed approach outperforms state-of-the-art methods such as HiFiC and ILLM, in terms of Fréchet Inception Distance (FID). The source code is provided in https://github.com/tongdaxu/Idempotence-and-Perceptual-Image-Compression.

#24 Sample-Efficient Linear Representation Learning from Non-IID Non-Isotropic Data [PDF6] [Copy] [Kimi9] [REL]

Authors: Thomas T. Zhang ; Leonardo Felipe Toso ; James Anderson ; Nikolai Matni

A powerful concept behind much of the recent progress in machine learning is the extraction of common features across data from heterogeneous sources or tasks. Intuitively, using all of one's data to learn a common representation function benefits both computational effort and statistical generalization by leaving a smaller number of parameters to fine-tune on a given task. Toward theoretically grounding these merits, we propose a general setting of recovering linear operators $M$from noisy vector measurements $y = Mx + w$, where the covariates $x$ may be both non-i.i.d. and non-isotropic. We demonstrate that existing isotropy-agnostic meta-learning approaches incur biases on the representation update, which causes the scaling of the noise terms to lose favorable dependence on the number of source tasks. This in turn can cause the sample complexity of representation learning to be bottlenecked by the single-task data size. We introduce an adaptation, $\texttt{De-bias}$ & $\texttt{Feature-Whiten}$ ($\texttt{DFW}$), of the popular alternating minimization-descent (AMD) scheme proposed in Collins et al., (2021), and establish linear convergence to the optimal representation with noise level scaling down with the $\textit{total}$ source data size. This leads to generalization bounds on the same order as an oracle empirical risk minimizer. We verify the vital importance of $\texttt{DFW}$ on various numerical simulations. In particular, we show that vanilla alternating-minimization descent fails catastrophically even for iid, but mildly non-isotropic data.Our analysis unifies and generalizes prior work, and provides a flexible framework for a wider range of applications, such as in controls and dynamical systems.

#25 Learning Hierarchical Image Segmentation For Recognition and By Recognition [PDF12] [Copy] [Kimi8] [REL]

Authors: Tsung-Wei Ke ; Sangwoo Mo ; Stella Yu

Image segmentation and recognition occur simultaneously, with recognition relying on the underlying segmentation to form a continuous visual grouping hierarchy. For example, the same object can be parsed into different part-to-whole structures, resulting in varying recognitions. Despite this, most prior works treated segmentation and recognition as separate tasks. In this paper, we aim to devise a learning framework that involves segmentation in the recognition process, utilizing hierarchical segmentation for recognition, which is learned by recognition. Specifically, we propose CAST, which realizes this concept through designs inspired by vision transformers, enabling concurrent segmentation and recognition with a single model. The core idea of CAST is to employ adaptive segment tokens that group the finest pixels into coarser segments, using the latest embedding to represent the entire image for recognition. Trained solely on image recognition objectives, CAST automatically discovers the hierarchy of segments. Our experiments demonstrate that CAST provides consistent hierarchical segmentation and recognition, which is impossible with state-of-the-art segmentation methods such as SAM. Additionally, CAST offers several advantages over the standard ViT, including improved semantic segmentation, computational efficiency, and object-centric attention.