ICML.2023 - Oral

Total: 155

#1 Scaling Vision Transformers to 22 Billion Parameters [PDF76] [Copy] [Kimi172]

Authors: Mostafa Dehghani ; Josip Djolonga ; Basil Mustafa ; Piotr Padlewski ; Jonathan Heek ; Justin Gilmer ; Andreas Steiner ; Mathilde Caron ; Robert Geirhos ; Ibrahim Alabdulmohsin ; Rodolphe Jenatton ; Lucas Beyer ; Michael Tschannen ; Anurag Arnab ; Xiao Wang ; Carlos Riquelme ; Matthias Minderer ; Joan Puigcerver ; Utku Evci ; Manoj Kumar ; Sjoerd van Steenkiste ; Gamaleldin Elsayed ; Aravindh Mahendran ; Fisher Yu ; Avital Oliver ; Fantine Huot ; Jasmijn Bastings ; Mark Collier ; Alexey Gritsenko ; Vighnesh N Birodkar ; Cristina Vasconcelos ; Yi Tay ; Thomas Mensink ; Alexander Kolesnikov ; Filip Pavetic ; Dustin Tran ; Thomas Kipf ; Mario Lucic ; Xiaohua Zhai ; Daniel Keysers ; Jeremiah Harmsen ; Neil Houlsby

The scaling of Transformers has driven breakthrough capabilities for language models. At present, the largest large language models (LLMs) contain upwards of 100B parameters. Vision Transformers (ViT) have introduced the same architecture to image and video modelling, but these have not yet been successfully scaled to nearly the same degree; the largest dense ViT contains 4B parameters (Chen et al., 2022). We present a recipe for highly efficient and stable training of a 22B-parameter ViT (ViT-22B) and perform a wide variety of experiments on the resulting model. When evaluated on downstream tasks (often with a lightweight linear model on frozen features), ViT-22B demonstrates increasing performance with scale. We further observe other interesting benefits of scale, including an improved tradeoff between fairness and performance, state-of-the-art alignment to human visual perception in terms of shape/texture bias, and improved robustness. ViT-22B demonstrates the potential for "LLM-like" scaling in vision, and provides key steps towards getting there.

#2 Equivariant Polynomials for Graph Neural Networks [PDF15] [Copy] [Kimi56]

Authors: Omri Puny ; Derek Lim ; Bobak T Kiani ; Haggai Maron ; Yaron Lipman

Graph Neural Networks (GNN) are inherently limited in their expressive power. Recent seminal works (Xu et al., 2019; Morris et al., 2019b) introduced the Weisfeiler-Lehman (WL) hierarchy as a measure of expressive power. Although this hierarchy has propelled significant advances in GNN analysis and architecture developments, it suffers from several significant limitations. These include a complex definition that lacks direct guidance for model improvement and a WL hierarchy that is too coarse to study current GNNs. This paper introduces an alternative expressive power hierarchy based on the ability of GNNs to calculate equivariant polynomials of a certain degree. As a first step, we provide a full characterization of all equivariant graph polynomials by introducing a concrete basis, significantly generalizing previous results. Each basis element corresponds to a specific multi-graph, and its computation over some graph data input corresponds to a tensor contraction problem. Second, we propose algorithmic tools for evaluating the expressiveness of GNNs using tensor contraction sequences, and calculate the expressive power of popular GNNs. Finally, we enhance the expressivity of common GNN architectures by adding polynomial features or additional operations / aggregations inspired by our theory. These enhanced GNNs demonstrate state-of-the-art results in experiments across multiple graph learning benchmarks.

#3 Tilted Sparse Additive Models [PDF10] [Copy] [Kimi35]

Authors: Yingjie Wang ; Hong Chen ; Weifeng Liu ; Fengxiang He ; Tieliang Gong ; YouCheng Fu ; Dacheng Tao

Additive models have been burgeoning in data analysis due to their flexible representation and desirable interpretability. However, most existing approaches are constructed under empirical risk minimization (ERM), and thus perform poorly in situations where average performance is not a suitable criterion for the problems of interest, e.g., data with complex non-Gaussian noise, imbalanced labels or both of them. In this paper, a novel class of sparse additive models is proposed under tilted empirical risk minimization (TERM), which addresses the deficiencies in ERM by imposing tilted impact on individual losses, and is flexibly capable of achieving a variety of learning objectives, e.g., variable selection, robust estimation, imbalanced classification and multiobjective learning. On the theoretical side, a learning theory analysis which is centered around the generalization bound and function approximation error bound (under some specific data distributions) is conducted rigorously. On the practical side, an accelerated optimization algorithm is designed by integrating Prox-SVRG and random Fourier acceleration technique. The empirical assessments verify the competitive performance of our approach on both synthetic and real data.

#4 Unifying Nesterov's Accelerated Gradient Methods for Convex and Strongly Convex Objective Functions [PDF7] [Copy] [Kimi14]

Authors: Jungbin Kim ; Insoon Yang

Although Nesterov's accelerated gradient method (AGM) has been studied from various perspectives, it remains unclear why the most popular forms of AGMs must handle convex and strongly convex objective functions separately. To address this inconsistency, we propose a novel unified framework for Lagrangians, ordinary differential equation (ODE) models, and algorithms. As a special case, our new simple momentum algorithm, which we call the unified AGM, seamlessly bridges the gap between the two most popular forms of Nesterov's AGM and has a superior convergence guarantee compared to existing algorithms for non-strongly convex objective functions. This property is beneficial in practice when considering ill-conditioned $\mu$-strongly convex objective functions (with small $\mu$). Furthermore, we generalize this algorithm and the corresponding ODE model to the higher-order non-Euclidean setting. Last but not least, our unified framework is used to construct the unified AGM-G ODE, a novel ODE model for minimizing the gradient norm of strongly convex functions.

#5 Raising the Cost of Malicious AI-Powered Image Editing [PDF7] [Copy] [Kimi17]

Authors: Hadi Salman ; Alaa Khaddaj ; Guillaume Leclerc ; Andrew Ilyas ; Aleksander Madry

We present an approach to mitigating the risks of malicious image editing posed by large diffusion models. The key idea is to immunize images so as to make them resistant to manipulation by these models. This immunization relies on injection of imperceptible adversarial perturbations designed to disrupt the operation of the targeted diffusion models, forcing them to generate unrealistic images. We provide two methods for crafting such perturbations, and then demonstrate their efficacy. Finally, we discuss a policy component necessary to make our approach fully effective and practical---one that involves the organizations developing diffusion models, rather than individual users, to implement (and support) the immunization process.

#6 AdaBoost is not an Optimal Weak to Strong Learner [PDF3] [Copy] [Kimi20]

Authors: Mikael Møller Høgsgaard ; Kasper Green Larsen ; Martin Ritzert

AdaBoost is a classic boosting algorithm for combining multiple inaccurate classifiers produced by a weak learner, to produce a strong learner with arbitrarily high accuracy when given enough training data. Determining the optimal number of samples necessary to obtain a given accuracy of the strong learner, is a basic learning theoretic question. Larsen and Ritzert (NeurIPS'22) recently presented the first provably optimal weak-to-strong learner. However, their algorithm is somewhat complicated and it remains an intriguing question whether the prototypical boosting algorithm AdaBoost also makes optimal use of training samples. In this work, we answer this question in the negative. Concretely, we show that the sample complexity of AdaBoost, and other classic variations thereof, are sub-optimal by at least one logarithmic factor in the desired accuracy of the strong learner.

#7 Towards Theoretical Understanding of Inverse Reinforcement Learning [PDF3] [Copy] [Kimi8]

Authors: Alberto Maria Metelli ; Filippo Lazzati ; Marcello Restelli

Inverse reinforcement learning (IRL) denotes a powerful family of algorithms for recovering a reward function justifying the behavior demonstrated by an expert agent. A well-known limitation of IRL is the ambiguity in the choice of the reward function, due to the existence of multiple rewards that explain the observed behavior. This limitation has been recently circumvented by formulating IRL as the problem of estimating the feasible reward set, i.e., the region of the rewards compatible with the expert's behavior. In this paper, we make a step towards closing the theory gap of IRL in the case of finite-horizon problems with a generative model. We start by formally introducing the problem of estimating the feasible reward set, the corresponding PAC requirement, and discussing the properties of particular classes of rewards. Then, we provide the first minimax lower bound on the sample complexity for the problem of estimating the feasible reward set of order ${\Omega}\left( \frac{H^3SA}{\epsilon^2} \left( \log \left(\frac{1}{\delta}\right) + S \right)\right)$, being $S$ and $A$ the number of states and actions respectively, $H$ the horizon, $\epsilon$ the desired accuracy, and $\delta$ the confidence. We analyze the sample complexity of a uniform sampling strategy (US-IRL), proving a matching upper bound up to logarithmic factors. Finally, we outline several open questions in IRL and propose future research directions.

#8 Human-Timescale Adaptation in an Open-Ended Task Space [PDF] [Copy] [Kimi7]

Authors: Jakob Bauer ; Kate Baumli ; Feryal Behbahani ; Avishkar Bhoopchand ; Natalie Bradley-Schmieg ; Michael Chang ; Natalie Clay ; Adrian Collister ; Vibhavari Dasagi ; Lucy Gonzalez ; Karol Gregor ; Edward Hughes ; Sheleem Kashem ; Maria Loks-Thompson ; Hannah Openshaw ; Jack Parker-Holder ; Shreya Pathak ; Nicolas Perez-Nieves ; Nemanja Rakicevic ; Tim Rocktäschel ; Yannick Schroecker ; Satinder Singh ; Jakub Sygnowski ; Karl Tuyls ; Sarah York ; Alexander Zacherl ; Lei Zhang

Foundation models have shown impressive adaptation and scalability in supervised and self-supervised learning problems, but so far these successes have not fully translated to reinforcement learning (RL). In this work, we demonstrate that training an RL agent at scale leads to a general in-context learning algorithm that can adapt to open-ended novel embodied 3D problems as quickly as humans. In a vast space of held-out environment dynamics, our adaptive agent (AdA) displays on-the-fly hypothesis-driven exploration, efficient exploitation of acquired knowledge, and can successfully be prompted with first-person demonstrations. Adaptation emerges from three ingredients: (1) meta-reinforcement learning across a vast, smooth and diverse task distribution, (2) a policy parameterised as a large-scale attention-based memory architecture, and (3) an effective automated curriculum that prioritises tasks at the frontier of an agent's capabilities. We demonstrate characteristic scaling laws with respect to network size, memory length, and richness of the training task distribution. We believe our results lay the foundation for increasingly general and adaptive RL agents that perform well across ever-larger open-ended domains.

#9 Bidirectional Adaptation for Robust Semi-Supervised Learning with Inconsistent Data Distributions [PDF8] [Copy] [Kimi8]

Authors: Lin-Han Jia ; Lan-Zhe Guo ; Zhi Zhou ; Jie-Jing Shao ; Yuke Xiang ; Yu-Feng Li

Semi-supervised learning (SSL) suffers from severe performance degradation when labeled and unlabeled data come from inconsistent data distributions. However, there is still a lack of sufficient theoretical guidance on how to alleviate this problem. In this paper, we propose a general theoretical framework that demonstrates how distribution discrepancies caused by pseudo-label predictions and target predictions can lead to severe generalization errors. Through theoretical analysis, we identify three main reasons why previous SSL algorithms cannot perform well with inconsistent distributions: coupling between the pseudo-label predictor and the target predictor, biased pseudo labels, and restricted sample weights. To address these challenges, we introduce a practical framework called Bidirectional Adaptation that can adapt to the distribution of unlabeled data for debiased pseudo-label prediction and to the target distribution for debiased target prediction, thereby mitigating these shortcomings. Extensive experimental results demonstrate the effectiveness of our proposed framework.

#10 Second-Order Optimization with Lazy Hessians [PDF6] [Copy] [Kimi14]

Authors: Nikita Doikov ; El Mahdi Chayti ; Martin Jaggi

We analyze Newton's method with lazy Hessian updates for solving general possibly non-convex optimization problems. We propose to reuse a previously seen Hessian for several iterations while computing new gradients at each step of the method. This significantly reduces the overall arithmetic complexity of second-order optimization schemes. By using the cubic regularization technique, we establish fast global convergence of our method to a second-order stationary point, while the Hessian does not need to be updated each iteration. For convex problems, we justify global and local superlinear rates for lazy Newton steps with quadratic regularization, which is easier to compute. The optimal frequency for updating the Hessian is once every $d$ iterations, where $d$ is the dimension of the problem. This provably improves the total arithmetic complexity of second-order algorithms by a factor $\sqrt{d}$.

#11 Diffusion Models as Artists: Are we Closing the Gap between Humans and Machines? [PDF5] [Copy] [Kimi11]

Authors: Victor Boutin ; Thomas FEL ; Lakshya Singhal ; Rishav Mukherji ; Akash Nagaraj ; Julien Colin ; Thomas Serre

An important milestone for AI is the development of algorithms that can produce drawings that are indistinguishable from those of humans. Here, we adapt the ''diversity vs. recognizability'' scoring framework from Boutin et al (2022) and find that one-shot diffusion models have indeed started to close the gap between humans and machines. However, using a finer-grained measure of the originality of individual samples, we show that strengthening the guidance of diffusion models helps improve the humanness of their drawings, but they still fall short of approximating the originality and recognizability of human drawings. Comparing human category diagnostic features, collected through an online psychophysics experiment, against those derived from diffusion models reveals that humans rely on fewer and more localized features. Overall, our study suggests that diffusion models have significantly helped improve the quality of machine-generated drawings; however, a gap between humans and machines remains -- in part explainable by discrepancies in visual strategies.

#12 Brauer's Group Equivariant Neural Networks [PDF4] [Copy] [Kimi10]

Author: Edward Pearce-Crump

We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of $\mathbb{R}^{n}$ for three symmetry groups that are missing from the machine learning literature: $O(n)$, the orthogonal group; $SO(n)$, the special orthogonal group; and $Sp(n)$, the symplectic group. In particular, we find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces in the standard basis of $\mathbb{R}^{n}$ when the group is $O(n)$ or $SO(n)$, and in the symplectic basis of $\mathbb{R}^{n}$ when the group is $Sp(n)$.

#13 Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference [PDF3] [Copy] [Kimi7]

Authors: Kyurae Kim ; Kaiwen Wu ; Jisu Oh ; Jacob Gardner

Understanding the gradient variance of black-box variational inference (BBVI) is a crucial step for establishing its convergence and developing algorithmic improvements. However, existing studies have yet to show that the gradient variance of BBVI satisfies the conditions used to study the convergence of stochastic gradient descent (SGD), the workhorse of BBVI. In this work, we show that BBVI satisfies a matching bound corresponding to the ABC condition used in the SGD literature when applied to smooth and quadratically-growing log-likelihoods. Our results generalize to nonlinear covariance parameterizations widely used in the practice of BBVI. Furthermore, we show that the variance of the mean-field parameterization has provably superior dimensional dependence.

#14 Understanding Plasticity in Neural Networks [PDF3] [Copy] [Kimi14]

Authors: Clare Lyle ; Zeyu Zheng ; Evgenii Nikishin ; Bernardo Avila Pires ; Razvan Pascanu ; Will Dabney

Plasticity, the ability of a neural network to quickly change its predictions in response to new information, is essential for the adaptability and robustness of deep reinforcement learning systems. Deep neural networks are known to lose plasticity over the course of training even in relatively simple learning problems, but the mechanisms driving this phenomenon are still poorly understood. This paper conducts a systematic empirical analysis into plasticity loss, with the goal of understanding the phenomenon mechanistically in order to guide the future development of targeted solutions. We find that loss of plasticity is deeply connected to changes in the curvature of the loss landscape, but that it often occurs in the absence of saturated units. Based on this insight, we identify a number of parameterization and optimization design choices which enable networks to better preserve plasticity over the course of training. We validate the utility of these findings on larger-scale RL benchmarks in the Arcade Learning Environment.

#15 Structure-informed Language Models Are Protein Designers [PDF2] [Copy] [Kimi6]

Authors: Zaixiang Zheng ; Yifan Deng ; Dongyu Xue ; Yi Zhou ; Fei YE ; Quanquan Gu

This paper demonstrates that language models are strong structure-based protein designers. We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs), that have learned massive sequential evolutionary knowledge from the universe of natural protein sequences, to acquire an immediate capability to design preferable protein sequences for given folds. We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness. During inference, iterative refinement is performed to effectively optimize the generated protein sequences. Experiments show that LM-Design improves the state-of-the-art results by a large margin, leading to 4% to 12% accuracy gains in sequence recovery (e.g., 55.65%/56.63% on CATH 4.2/4.3 single-chain benchmarks, and >60% when designing protein complexes). We provide extensive and in-depth analyses, which verify that LM-Design can (1) indeed leverage both structural and sequential knowledge to accurately handle structurally non-deterministic regions, (2) benefit from scaling data and model size, and (3) generalize to other proteins (e.g., antibodies and de novo proteins).

#16 Cross-Modal Fine-Tuning: Align then Refine [PDF6] [Copy] [Kimi18]

Authors: Junhong Shen ; Liam Li ; Lucio Dery ; Corey Staten ; Mikhail Khodak ; Graham Neubig ; Ameet Talwalkar

Fine-tuning large-scale pretrained models has led to tremendous progress in well-studied modalities such as vision and NLP. However, similar gains have not been observed in many other modalities due to a lack of relevant pretrained models. In this work, we propose ORCA, a general cross-modal fine-tuning framework that extends the applicability of a single large-scale pretrained model to diverse modalities. ORCA adapts to a target task via an align-then-refine workflow: given the target input, ORCA first learns an embedding network that aligns the embedded feature distribution with the pretraining modality. The pretrained model is then fine-tuned on the embedded data to exploit the knowledge shared across modalities. Through extensive experiments, we show that ORCA obtains state-of-the-art results on 3 benchmarks containing over 60 datasets from 12 modalities, outperforming a wide range of hand-designed, AutoML, general-purpose, and task-specific cross-modal methods. We highlight the importance of data alignment via a series of ablation studies and exemplify ORCA's utility in data-limited regimes.

#17 Arithmetic Sampling: Parallel Diverse Decoding for Large Language Models [PDF1] [Copy] [Kimi7]

Authors: Luke Vilnis ; Yury Zemlyanskiy ; Patrick Murray ; Alexandre Passos ; Sumit Sanghai

Decoding methods for large language models often trade-off between diversity of outputs and parallelism of computation. Methods such as beam search and Gumbel top-k sampling can guarantee a different output for each element of the beam, but are not easy to parallelize. Alternatively, methods such as temperature sampling and its modifications (top-k sampling, nucleus sampling, typical decoding, and others), are embarrassingly parallel, but have no guarantees about duplicate samples. We present a framework for sampling according to an arithmetic code book implicitly defined by a large language model, compatible with common sampling variations, with provable beam diversity under certain conditions, as well as being embarrassingly parallel and providing unbiased and consistent expectations from the original model. We demonstrate the effectiveness of our approach on WMT machine translation, more than halving the standard deviation when estimating expected BLEU score reward, and closing the BLEU score gap between independent sampling and beam search by up to 63%.

#18 Subequivariant Graph Reinforcement Learning in 3D Environments [PDF] [Copy] [Kimi5]

Authors: Runfa Chen ; Jiaqi Han ; Fuchun Sun ; Wenbing Huang

Learning a shared policy that guides the locomotion of different agents is of core interest in Reinforcement Learning (RL), which leads to the study of morphology-agnostic RL. However, existing benchmarks are highly restrictive in the choice of starting point and target point, constraining the movement of the agents within 2D space. In this work, we propose a novel setup for morphology-agnostic RL, dubbed Subequivariant Graph RL in 3D environments (3D-SGRL). Specifically, we first introduce a new set of more practical yet challenging benchmarks in 3D space that allows the agent to have full Degree-of-Freedoms to explore in arbitrary directions starting from arbitrary configurations. Moreover, to optimize the policy over the enlarged state-action space, we propose to inject geometric symmetry, i.e., subequivariance, into the modeling of the policy and Q-function such that the policy can generalize to all directions, improving exploration efficiency. This goal is achieved by a novel SubEquivariant Transformer (SET) that permits expressive message exchange. Finally, we evaluate the proposed method on the proposed benchmarks, where our method consistently and significantly outperforms existing approaches on single-task, multi-task, and zero-shot generalization scenarios. Extensive ablations are also conducted to verify our design.

#19 Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels [PDF4] [Copy] [Kimi7]

Authors: Simone Bombari ; Shayan Kiyani ; Marco Mondelli

Machine learning models are vulnerable to adversarial perturbations, and a thought-provoking paper by Bubeck and Sellke has analyzed this phenomenon through the lens of over-parameterization: interpolating smoothly the data requires significantly more parameters than simply memorizing it. However, this "universal" law provides only a necessary condition for robustness, and it is unable to discriminate between models. In this paper, we address these gaps by focusing on empirical risk minimization in two prototypical settings, namely, random features and the neural tangent kernel (NTK). We prove that, for random features, the model is not robust for any degree of over-parameterization, even when the necessary condition coming from the universal law of robustness is satisfied. In contrast, for even activations, the NTK model meets the universal lower bound, and it is robust as soon as the necessary condition on over-parameterization is fulfilled. This also addresses a conjecture in prior work by Bubeck, Li and Nagaraj. Our analysis decouples the effect of the kernel of the model from an "interaction matrix", which describes the interaction with the test data and captures the effect of the activation. Our theoretical results are corroborated by numerical evidence on both synthetic and standard datasets (MNIST, CIFAR-10).

#20 Adversarial Example Does Good: Preventing Painting Imitation from Diffusion Models via Adversarial Examples [PDF3] [Copy] [Kimi5]

Authors: Chumeng Liang ; Xiaoyu Wu ; Yang Hua ; Jiaru Zhang ; Yiming Xue ; Tao Song ; Zhengui XUE ; Ruhui Ma ; Haibing Guan

Recently, Diffusion Models (DMs) boost a wave in AI for Art yet raise new copyright concerns, where infringers benefit from using unauthorized paintings to train DMs and generate novel paintings in a similar style. To address these emerging copyright violations, in this paper, we are the first to explore and propose to utilize adversarial examples for DMs to protect human-created artworks. Specifically, we first build a theoretical framework to define and evaluate the adversarial examples for DMs. Then, based on this framework, we design a novel algorithm to generate these adversarial examples, named AdvDM, which exploits a Monte-Carlo estimation of adversarial examples for DMs by optimizing upon different latent variables sampled from the reverse process of DMs. Extensive experiments show that the generated adversarial examples can effectively hinder DMs from extracting their features. Therefore, our method can be a powerful tool for human artists to protect their copyright against infringers equipped with DM-based AI-for-Art applications. The code of our method is available on GitHub: https://github.com/mist-project/mist.git.

#21 Memory-Based Dual Gaussian Processes for Sequential Learning [PDF] [Copy] [Kimi4]

Authors: Paul Chang ; Prakhar Verma ; ST John ; Arno Solin ; Khan Emtiyaz

Sequential learning with Gaussian processes (GPs) is challenging when access to past data is limited, for example, in continual and active learning. In such cases, errors can accumulate over time due to inaccuracies in the posterior, hyperparameters, and inducing points, making accurate learning challenging. Here, we present a method to keep all such errors in check using the recently proposed dual sparse variational GP. Our method enables accurate inference for generic likelihoods and improves learning by actively building and updating a memory of past data. We demonstrate its effectiveness in several applications involving Bayesian optimization, active learning, and continual learning.

#22 Inflow, Outflow, and Reciprocity in Machine Learning [PDF] [Copy] [Kimi4]

Authors: Mukund Sundararajan ; Walid Krichene

Data is pooled across entities (individuals or enterprises) to create machine learning models, and sometimes, the entities that contribute the data also benefit from the models. Consider for instance a recommender system (e.g. Spotify, Instagram or YouTube), a health care app that predicts the risk for some disease, or a service built by pooling data across enterprises. In this work we propose a framework to study this value exchange, i.e., we model and measure contributions (outflows), benefits (inflows) and the balance between contributions and benefits (the degree of reciprocity). We show theoretically, and via experiments that under certain distributional assumptions, some classes of models are approximately reciprocal. These results only scratch the surface; we conclude with several open directions.

#23 Robust Budget Pacing with a Single Sample [PDF] [Copy] [Kimi3]

Authors: Santiago Balseiro ; Rachitesh Kumar ; Vahab Mirrokni ; Balasubramanian Sivan ; Di Wang

Major Internet advertising platforms offer budget pacing tools as a standard service for advertisers to manage their ad campaigns. Given the inherent non-stationarity in an advertiser's value and also competing advertisers' values over time, a commonly used approach is to learn a target expenditure plan that specifies a target spend as a function of time, and then run a controller that tracks this plan. This raises the question: *how many historical samples are required to learn a good expenditure plan*? We study this question by considering an advertiser repeatedly participating in $T$ second-price auctions, where the tuple of her value and the highest competing bid is drawn from an unknown time-varying distribution. The advertiser seeks to maximize her total utility subject to her budget constraint. Prior work has shown the sufficiency of *$T\log T$ samples per distribution* to achieve the optimal $O(\sqrt{T})$-regret. We dramatically improve this state-of-the-art and show that *just one sample per distribution* is enough to achieve the near-optimal $\tilde O(\sqrt{T})$-regret, while still being robust to noise in the sampling distributions.

#24 Mu$^2$SLAM: Multitask, Multilingual Speech and Language Models [PDF6] [Copy] [Kimi6]

Authors: Yong Cheng ; Yu Zhang ; Melvin Johnson ; Wolfgang Macherey ; Ankur Bapna

We present Mu$^2$SLAM, a multilingual sequence-to-sequence model pre-trained jointly on unlabeled speech, unlabeled text and supervised data spanning Automatic Speech Recognition (ASR), Automatic Speech Translation (AST) and Machine Translation (MT), in over 100 languages. By leveraging a quantized representation of speech as a target, Mu$^2$SLAM trains the speech-text models with a sequence-to-sequence masked denoising objective similar to T5 on the decoder and a masked language modeling objective (MLM) on the encoder, for both unlabeled speech and text, while utilizing the supervised tasks to improve cross-lingual and cross-modal representation alignment within the model. On CoVoST AST, Mu$^2$SLAM establishes a new state-of-the-art for models trained on public datasets, improving on xx-en translation over the previous best by 1.9 BLEU points and on en-xx translation by 1.1 BLEU points. On Voxpopuli ASR, our model matches the performance of an mSLAM model fine-tuned with an RNN-T decoder, despite using a relatively weaker Transformer decoder. On text understanding tasks, our model improves by more than 6% over mSLAM on XNLI, getting closer to the performance of mT5 models of comparable capacity on XNLI and TydiQA, paving the way towards a single model for all speech and text understanding tasks.

#25 Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks [PDF3] [Copy] [Kimi6]

Authors: Mohammed Nowaz Rabbani Chowdhury ; Shuai Zhang ; Meng Wang ; Sijia Liu ; Pin-Yu Chen

In deep learning, mixture-of-experts (MoE) activates one or few experts (sub-networks) on a per-sample or per-token basis, resulting in significant computation reduction. The recently proposed patch-level routing in MoE (pMoE) divides each input into $n$ patches (or tokens) and sends $l$ patches ($l\ll n$) to each expert through prioritized routing. pMoE has demonstrated great empirical success in reducing training and inference costs while maintaining test accuracy. However, the theoretical explanation of pMoE and the general MoE remains elusive. Focusing on a supervised classification task using a mixture of two-layer convolutional neural networks (CNNs), we show for the first time that pMoE provably reduces the required number of training samples to achieve desirable generalization (referred to as the sample complexity) by a factor in the polynomial order of $n/l$, and outperforms its single-expert counterpart of the same or even larger capacity. The advantage results from the discriminative routing property, which is justified in both theory and practice that pMoE routers can filter label-irrelevant patches and route similar class-discriminative patches to the same expert. Our experimental results on MNIST, CIFAR-10, and CelebA support our theoretical findings on pMoE's generalization and show that pMoE can avoid learning spurious correlations.