NAACL.2024 - Short Papers

| Total: 75

#1 Revisiting Zero-Shot Abstractive Summarization in the Era of Large Language Models from the Perspective of Position Bias [PDF3] [Copy] [Kimi4] [REL]

Authors: Anshuman Chhabra ; Hadi Askari ; Prasant Mohapatra

We characterize and study zero-shot abstractive summarization in Large Language Models (LLMs) by measuring position bias, which we propose as a general formulation of the more restrictive lead bias phenomenon studied previously in the literature. Position bias captures the tendency of a model unfairly prioritizing information from certain parts of the input text over others, leading to undesirable behavior. Through numerous experiments on four diverse real-world datasets, we study position bias in multiple LLM models such as GPT 3.5-Turbo, Llama-2, and Dolly-v2, as well as state-of-the-art pretrained encoder-decoder abstractive summarization models such as Pegasus and BART. Our findings lead to novel insights and discussion on performance and position bias of models for zero-shot summarization tasks.

#2 Struc-Bench: Are Large Language Models Good at Generating Complex Structured Tabular Data? [PDF3] [Copy] [Kimi6] [REL]

Authors: Xiangru Tang ; Yiming Zong ; Jason Phang ; Yilun Zhao ; Wangchunshu Zhou ; Arman Cohan ; Mark Gerstein

Despite the remarkable capabilities of Large Language Models (LLMs) like GPT-4, producing complex, structured tabular data remains challenging. Our study assesses LLMs’ proficiency in structuring tables and introduces a novel fine-tuning method, cognizant of data structures, to bolster their performance. We unveil Struc-Bench, a comprehensive benchmark featuring prominent LLMs (GPT-NeoX-20B, GPT-3.5, GPT-4, and Vicuna), which spans text tables, HTML, and LaTeX formats. Our proposed FormatCoT aids in crafting format-specific instructions from the intended outputs to populate this benchmark. Addressing the gap in task-centered evaluation, we propose two innovative metrics, P-Score (Prompting Score) and H-Score (Heuristical Score), to more accurately gauge LLM performance. Our experiments show that applying our structure-aware fine-tuning to LLaMA-7B leads to substantial performance gains, outshining its LLM counterparts across most measures. In-depth error analysis and creating an ability map across six dimensions, coverage, formatting, reasoning, comprehension, pragmatics, and hallucination, highlight areas for future enhancements and suggest forthcoming research trajectories. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench.

#3 Improving Toponym Resolution by Predicting Attributes to Constrain Geographical Ontology Entries [PDF1] [Copy] [Kimi4] [REL]

Authors: Zeyu Zhang ; Egoitz Laparra ; Steven Bethard

Geocoding is the task of converting location mentions in text into structured geospatial data.We propose a new prompt-based paradigm for geocoding, where the machine learning algorithm encodes only the location mention and its context.We design a transformer network for predicting the country, state, and feature class of a location mention, and a deterministic algorithm that leverages the country, state, and feature class predictions as constraints in a search for compatible entries in the ontology.Our architecture, GeoPLACE, achieves new state-of-the-art performance on multiple datasets.Code and models are available at https://github.com/clulab/geonorm.

#4 Advancing Regular Language Reasoning in Linear Recurrent Neural Networks [PDF] [Copy] [Kimi3] [REL]

Authors: Ting-Han Fan ; Ta-Chung Chi ; Alexander Rudnicky

In recent studies, linear recurrent neural networks (LRNNs) have achieved Transformer-level performance in natural language and long-range modeling, while offering rapid parallel training and constant inference cost. With the resurgence of interest in LRNNs, we study whether they can learn the hidden rules in training sequences, such as the grammatical structures of regular language. We theoretically analyze some existing LRNNs and discover their limitations in modeling regular language. Motivated by this analysis, we propose a new LRNN equipped with a block-diagonal and input-dependent transition matrix. Experiments suggest that the proposed model is the only LRNN capable of performing length extrapolation on regular language tasks such as Sum, Even Pair, and Modular Arithmetic. The code is released at https://github.com/tinghanf/RegluarLRNN.

#5 Extracting Lexical Features from Dialects via Interpretable Dialect Classifiers [PDF1] [Copy] [Kimi4] [REL]

Authors: Roy Xie ; Orevaoghene Ahia ; Yulia Tsvetkov ; Antonios Anastasopoulos

Identifying linguistic differences between dialects of a language often requires expert knowledge and meticulous human analysis. This is largely due to the complexity and nuance involved in studying various dialects. We present a novel approach to extract distinguishing lexical features of dialects by utilizing interpretable dialect classifiers, even in the absence of human experts. We explore both post-hoc and intrinsic approaches to interpretability, conduct experiments on Mandarin, Italian, and Low Saxon, and experimentally demonstrate that our method successfully identifies key language-specific lexical features that contribute to dialectal variations.

#6 Clear Up Confusion: Advancing Cross-Domain Few-Shot Relation Extraction through Relation-Aware Prompt Learning [PDF] [Copy] [Kimi1] [REL]

Authors: Ge Bai ; Chenji Lu ; Daichi Guo ; Shilong Li ; Ying Liu ; Zhang Zhang ; Guanting Dong ; Ruifang Liu ; Sun Yong

Cross-domain few-shot Relation Extraction (RE) aims to transfer knowledge from a source domain to a different target domain to address low-resource problems.Previous work utilized label descriptions and entity information to leverage the knowledge of the source domain.However, these models are prone to confusion when directly applying this knowledge to a target domain with entirely new types of relations, which becomes particularly pronounced when facing similar relations.In this work, we propose a relation-aware prompt learning method with pre-training.Specifically, we empower the model to clear confusion by decomposing various relation types through an innovative label prompt, while a context prompt is employed to capture differences in different scenarios, enabling the model to further discern confusion. Two pre-training tasks are designed to leverage the prompt knowledge and paradigm.Experiments show that our method outperforms previous sota methods, yielding significantly better results on cross-domain few-shot RE tasks.

#7 Fusion Makes Perfection: An Efficient Multi-Grained Matching Approach for Zero-Shot Relation Extraction [PDF1] [Copy] [Kimi2] [REL]

Authors: Shilong Li ; Ge Bai ; Zhang Zhang ; Ying Liu ; Chenji Lu ; Daichi Guo ; Ruifang Liu ; Sun Yong

Predicting unseen relations that cannot be observed during the training phase is a challenging task in relation extraction. Previous works have made progress by matching the semantics between input instances and label descriptions. However, fine-grained matching often requires laborious manual annotation, and rich interactions between instances and label descriptions come with significant computational overhead. In this work, we propose an efficient multi-grained matching approach that uses virtual entity matching to reduce manual annotation cost, and fuses coarse-grained recall and fine-grained classification for rich interactions with guaranteed inference speed.Experimental results show that our approach outperforms the previous State Of The Art (SOTA) methods, and achieves a balance between inference efficiency and prediction accuracy in zero-shot relation extraction tasks.Our code is available at https://github.com/longls777/EMMA.

#8 Personalized Review Recommendation based on Implicit dimension mining [PDF] [Copy] [Kimi6] [REL]

Authors: Bei Xu ; Yifan Xu

Users usually browse product reviews before buying products from e-commerce websites. Lots of e-commerce websites can recommend reviews. However, existing research on review recommendation mainly focuses on the general usefulness of reviews and ignores personalized and implicit requirements. To address the issue, we propose a Large language model driven Personalized Review Recommendation model based on Implicit dimension mining (PRR-LI). The model mines implicit dimensions from reviews and requirements, and encodes them in the form of “text + dimension”. The experiments show that our model significantly outperforms other state-of-the-art textual models on the Amazon-MRHP dataset, with some of the metrics outperforming the state-of-the-art multimodal models. And we prove that encoding “text + dimension” is better than encoding “text” and “dimension” separately in review recommendation.

#9 Unlocking Structure Measuring: Introducing PDD, an Automatic Metric for Positional Discourse Coherence [PDF] [Copy] [Kimi] [REL]

Authors: Yinhong Liu ; Yixuan Su ; Ehsan Shareghi ; Nigel Collier

Recent large language models (LLMs) have shown remarkable performance in aligning generated text with user intentions across various tasks. When it comes to long-form text generation, there has been a growing interest in generation from a discourse coherence perspective.However, existing lexical or semantic metrics such as BLEU, ROUGE, BertScore cannot effectively capture the discourse coherence.The development of discourse-specific automatic evaluation methods for assessing the output of LLMs warrants greater focus and exploration. In this paper, we present a novel automatic metric designed to quantify the discourse divergence between two long-form articles.Extensive experiments on three datasets from representative domains demonstrate that our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.

#10 Returning to the Start: Generating Narratives with Related Endpoints [PDF1] [Copy] [Kimi2] [REL]

Authors: Anneliese Brei ; Chao Zhao ; Snigdha Chaturvedi

Human writers often *bookend* their writing with ending sentences that relate back to the beginning sentences in order to compose a satisfying narrative that “closes the loop.” Motivated by this observation, we propose RENarGen, a controllable story-generation paradigm that generates narratives by ensuring the first and last sentences are related and then infilling the middle sentences. Our contributions include an initial exploration of how various methods of bookending from Narratology affect language modeling for stories. Automatic and human evaluations indicate RENarGen produces better stories with more narrative closure than current autoregressive models.

#11 Unified Examination of Entity Linking in Absence of Candidate Sets [PDF] [Copy] [Kimi2] [REL]

Authors: Nicolas Ong ; Hassan Shavarani ; Anoop Sarkar

Despite remarkable strides made in the development of entity linking systems in recent years, a comprehensive comparative analysis of these systems using a unified framework is notably absent. This paper addresses this oversight by introducing a new black-box benchmark and conducting a comprehensive evaluation of all state-of-the-art entity linking methods. We use an ablation study to investigate the impact of candidate sets on the performance of entity linking. Our findings uncover exactly how much such entity linking systems depend on candidate sets, and how much this limits the general applicability of each system. We present an alternative approach to candidate sets, demonstrating that leveraging the entire in-domain candidate set can serve as a viable substitute for certain models. We show the trade-off between less restrictive candidate sets, increased inference time and memory footprint for some models.

#12 MultiParaDetox: Extending Text Detoxification with Parallel Data to New Languages [PDF] [Copy] [Kimi3] [REL]

Authors: Daryna Dementieva ; Nikolay Babakov ; Alexander Panchenko

Text detoxification is a textual style transfer (TST) task where a text is paraphrased from a toxic surface form, e.g. featuring rude words, to the neutral register. Recently, text detoxification methods found their applications in various task such as detoxification of Large Language Models (LLMs) (Leong et al., 2023; He et al., 2024; Tang et al., 2023) and toxic speech combating in social networks (Deng et al., 2023; Mun et al., 2023; Agarwal et al., 2023). All these applications are extremely important to ensure safe communication in modern digital worlds. However, the previous approaches for parallel text detoxification corpora collection—ParaDetox (Logacheva et al., 2022) and APPADIA (Atwell et al., 2022)—were explored only in monolingual setup. In this work, we aim to extend ParaDetox pipeline to multiple languages presenting MultiParaDetox to automate parallel detoxification corpus collection for potentially any language. Then, we experiment with different text detoxification models—from unsupervised baselines to LLMs and fine-tuned models on the presented parallel corpora—showing the great benefit of parallel corpus presence to obtain state-of-the-art text detoxification models for any language.

#13 SKICSE: Sentence Knowable Information Prompted by LLMs Improves Contrastive Sentence Embeddings [PDF] [Copy] [Kimi2] [REL]

Authors: Fangwei Ou ; Jinan Xu

Contrastive learning, which utilizes positive pairs and in-batch negatives to optimize the loss objective, has been proven to be an effective method for learning sentence embeddings. However, we argue that the previous methods of constructing positive pairs only through dropout perturbation or entailment relation are limited. Since there is more sentence knowable information (SKI) to be mined, such as sentence external knowledge, semantic analysis, and grammatical description. In this work, we first hand-craft a simple and effective prompt template that is able to obtain the knowable information of input sentences from LLMs (e.g., LLaMA). Then we combine the original sentence and its knowable information to form a positive pair for contrastive learning. We evaluate our method on standard semantic textual similarity (STS) tasks. Experimental results show that our unsupervised and supervised models using BERTbase achieve an average of 78.65% and 82.45% Spearman’s correlation respectively, a 2.40% and 0.88% improvement compared to SimCSE. Our model outperforms the previous state-of-the-art model PromptBERT in both unsupervised and supervised settings and specifically yields a new state-of-the-art performance in supervised setting.

#14 A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models [PDF] [Copy] [Kimi] [REL]

Authors: Jaylen Jones ; Lingbo Mo ; Eric Fosler-Lussier ; Huan Sun

Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions, the evaluation of these approaches remains underdeveloped. Previous automatic metrics for counter narrative evaluation lack alignment with human judgment as they rely on superficial reference comparisons instead of incorporating key aspects of counter narrative quality as evaluation criteria. To address prior evaluation limitations, we propose a novel evaluation framework prompting LLMs to provide scores and feedback for generated counter narrative candidates using 5 defined aspects derived from guidelines from counter narrative specialized NGOs. We found that LLM evaluators achieve strong alignment to human-annotated scores and feedback and outperform alternative metrics, indicating their potential as multi-aspect, reference-free and interpretable evaluators for counter narrative evaluation.

#15 How does Multi-Task Training Affect Transformer In-Context Capabilities? Investigations with Function Classes [PDF] [Copy] [Kimi] [REL]

Authors: Harmon Bhasin ; Timothy Ossowski ; Yiqiao Zhong ; Junjie Hu

Large language models (LLM) have recently shown the extraordinary ability to perform unseen tasks based on few-shot examples provided as text, also known as in-context learning (ICL). While recent works have attempted to understand the mechanisms driving ICL, few have explored training strategies that incentivize these models to generalize to multiple tasks. Multi-task learning (MTL) for generalist models is a promising direction that offers transfer learning potential, enabling large parameterized models to be trained from simpler, related tasks. In this work, we investigate the combination of MTL with ICL to build models that efficiently learn tasks while being robust to out-of-distribution examples. We propose several effective curriculum learning strategies that allow ICL models to achieve higher data efficiency and more stable convergence. Our experiments reveal that ICL models can effectively learn difficult tasks by training on progressively harder tasks while mixing in prior tasks, denoted as mixed curriculum in this work.

#16 CELI: Simple yet Effective Approach to Enhance Out-of-Domain Generalization of Cross-Encoders. [PDF1] [Copy] [Kimi] [REL]

Authors: Crystina Zhang ; Minghan Li ; Jimmy Lin

In text ranking, it is generally believed that the cross-encoders already gather sufficient token interaction information via the attention mechanism in the hidden layers. However, our results show that the cross-encoders can consistently benefit from additional token interaction in the similarity computation at the last layer. We introduce CELI (Cross-Encoder with Late Interaction), which incorporates a late interaction layer into the current cross-encoder models. This simple method brings 5% improvement on BEIR without compromising in-domain effectiveness or search latency. Extensive experiments show that this finding is consistent across different sizes of the cross-encoder models and the first-stage retrievers. Our findings suggest that boiling all information into the [CLS] token is a suboptimal use for cross-encoders, and advocate further studies to investigate its relevance score mechanism.

#17 ContrastiveMix: Overcoming Code-Mixing Dilemma in Cross-Lingual Transfer for Information Retrieval [PDF1] [Copy] [Kimi] [REL]

Authors: Junggeun Do ; Jaeseong Lee ; Seung-won Hwang

Multilingual pretrained language models (mPLMs) have been widely adopted in cross-lingual transfer, and code-mixing has demonstrated effectiveness across various tasks in the absence of target language data. Our contribution involves an in-depth investigation into the counterproductive nature of training mPLMs on code-mixed data for information retrieval (IR). Our finding is that while code-mixing demonstrates a positive effect in aligning representations across languages, it hampers the IR-specific objective of matching representations between queries and relevant passages. To balance between positive and negative effects, we introduce ContrastiveMix, which disentangles contrastive loss between these conflicting objectives, thereby enhancing zero-shot IR performance. Specifically, we leverage both English and code-mixed data and employ two contrastive loss functions, by adding an additional contrastive loss that aligns embeddings of English data with their code-mixed counterparts in the query encoder. Our proposed ContrastiveMix exhibits statistically significant outperformance compared to mDPR, particularly in scenarios involving lower linguistic similarity, where the conflict between goals is more pronounced.

#18 SLIDE: Reference-free Evaluation for Machine Translation using a Sliding Document Window [PDF1] [Copy] [Kimi] [REL]

Authors: Vikas Raunak ; Tom Kocmi ; Matt Post

Reference-based metrics that operate at the sentence-level typically outperform quality estimation metrics, which have access only to the source and system output.This is unsurprising, since references resolve ambiguities that may be present in the source.In this paper, we investigate whether additional source context can effectively substitute for a reference.We present a metric named SLIDE (SLIding Document Evaluator), which operates on blocks of sentences. SLIDE leverages a moving window that slides over each document in the test set, feeding each chunk of sentences into an unmodified, off-the-shelf quality estimation model.We find that SLIDE obtains significantly higher pairwise system accuracy than its sentence-level baseline, in some cases even eliminating the gap with reference-base metrics.This suggests that source context may provide the same information as a human reference in disambiguating source ambiguities. This finding is especially pertinent for reference-free document-level evaluation, wherein SLIDE could provide higher-quality pairwise system assessments while only requiring document boundary annotations.

#19 Separately Parameterizing Singleton Detection Improves End-to-end Neural Coreference Resolution [PDF] [Copy] [Kimi] [REL]

Authors: Xiyuan Zou ; Yiran Li ; Ian Porada ; Jackie Cheung

Current end-to-end coreference resolution models combine detection of singleton mentions and antecedent linking into a single step. In contrast, singleton detection was often treated as a separate step in the pre-neural era. In this work, we show that separately parameterizing these two sub-tasks also benefits end-to-end neural coreference systems. Specifically, we add a singleton detector to the coarse-to-fine (C2F) coreference model, and design an anaphoricity-aware span embedding and singleton detection loss. Our method significantly improves model performance on OntoNotes and four additional datasets.

#20 Unveiling Divergent Inductive Biases of LLMs on Temporal Data [PDF] [Copy] [Kimi2] [REL]

Authors: Sindhu Kishore ; Hangfeng He

Unraveling the intricate details of events in natural language necessitates a subtle understanding of temporal dynamics. Despite the adeptness of Large Language Models (LLMs) in discerning patterns and relationships from data, their inherent comprehension of temporal dynamics remains a formidable challenge. This research meticulously explores these intrinsic challenges within LLMs, with a specific emphasis on evaluating the performance of GPT-3.5 and GPT-4 models in the analysis of temporal data. Employing two distinct prompt types, namely Question Answering (QA) format and Textual Entailment (TE) format, our analysis probes into both implicit and explicit events. The findings underscore noteworthy trends, revealing disparities in the performance of GPT-3.5 and GPT-4. Notably, biases toward specific temporal relationships come to light, with GPT-3.5 demonstrating a preference for “AFTER” in the QA format for both implicit and explicit events, while GPT-4 leans towards “BEFORE”. Furthermore, a consistent pattern surfaces wherein GPT-3.5 tends towards “TRUE”, and GPT-4 exhibits a preference for “FALSE” in the TE format for both implicit and explicit events. This persistent discrepancy between GPT-3.5 and GPT-4 in handling temporal data highlights the intricate nature of inductive bias in LLMs, suggesting that the evolution of these models may not merely mitigate bias but may introduce new layers of complexity.

#21 On Retrieval Augmentation and the Limitations of Language Model Training [PDF1] [Copy] [Kimi] [REL]

Authors: Ting-Rui Chiang ; Xinyan Yu ; Joshua Robinson ; Ollie Liu ; Isabelle Lee ; Dani Yogatama

Augmenting a language model (LM) with k-nearest neighbors (kNN) retrieval on its training data alone can decrease its perplexity, though the underlying reasons for this remain elusive. In this work, we rule out one previously posited possibility — the “softmax bottleneck.” We then create a new dataset to evaluate LM generalization ability in the setting where training data contains additional information that is not causally relevant. This task is challenging even for GPT-3.5 Turbo. We show that, for both GPT-2 and Mistral 7B, kNN retrieval augmentation consistently improves per formance in this setting. Finally, to make kNN retrieval more accessible, we propose using amulti-layer perceptron model that maps datastore keys to values as a drop-in replacement for traditional retrieval. This reduces storage costsby over 25x.

#22 GenDecider: Integrating “None of the Candidates” Judgments in Zero-Shot Entity Linking Re-ranking [PDF] [Copy] [Kimi] [REL]

Authors: Kang Zhou ; Yuepei Li ; Qing Wang ; Qiao Qiao ; Qi Li

We introduce GenDecider, a novel re-ranking approach for Zero-Shot Entity Linking (ZSEL), built on the Llama model. It innovatively detects scenarios where the correct entity is not among the retrieved candidates, a common oversight in existing re-ranking methods. By autoregressively generating outputs based on the context of the entity mention and the candidate entities, GenDecider significantly enhances disambiguation, improving the accuracy and reliability of ZSEL systems, as demonstrated on the benchmark ZESHEL dataset. Our code is available at https://github.com/kangISU/GenDecider.

#23 Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [PDF] [Copy] [Kimi2] [REL]

Authors: Jiabao Ji ; Bairu Hou ; Zhen Zhang ; Guanhua Zhang ; Wenqi Fan ; Qing Li ; Yang Zhang ; Gaowen Liu ; Sijia Liu ; Shiyu Chang

Although large language models (LLMs) have achieved significant success, their vulnerability to adversarial perturbations, including recent jailbreak attacks, has raised considerable concerns. However, the increasing size of these models and their limited access make improving their robustness a challenging task. Among various defense strategies, randomized smoothing has shown great potential for LLMs, as it does not require full access to the model’s parameters or fine-tuning via adversarial training. However, randomized smoothing involves adding noise to the input before model prediction, and the final model’s robustness largely depends on the model’s performance on these noise-corrupted data. Its effectiveness is often limited by the model’s sub-optimal performance on noisy data. To address this issue, we propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions. We call this procedure self-denoised smoothing. Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility. Our experimental results indicate that our method surpasses existing methods in both empirical and certified robustness in defending against adversarial attacks for both downstream tasks and human alignments (i.e., jailbreak attacks). Our code is publicly available at https://github.com/UCSB-NLP-Chang/SelfDenoise.

#24 Can LLM’s Generate Human-Like Wayfinding Instructions? Towards Platform-Agnostic Embodied Instruction Synthesis [PDF] [Copy] [Kimi] [REL]

Authors: Vishnu Sashank Dorbala ; Sanjoy Chowdhury ; Dinesh Manocha

We present a novel approach to automatically synthesize “wayfinding instructions” for an embodied robot agent. In contrast to prior approaches that are heavily reliant on human-annotated datasets designed exclusively for specific simulation platforms, our algorithm uses in-context learning to condition an LLM to generate instructions using just a few references. Using an LLM-based Visual Question Answering strategy, we gather detailed information about the environment which is used by the LLM for instruction synthesis. We implement our approach on multiple simulation platforms including Matterport3D, AI Habitat and ThreeDWorld, thereby demonstrating its platform-agnostic nature. We subjectively evaluate our approach via a user study and observe that 83.3% of users find the synthesized instructions accurately capture the details of the environment and show characteristics similar to those of human-generated instructions. Further, we conduct zero-shot navigation with multiple approaches on the REVERIE dataset using the generated instructions, and observe very close correlation with the baseline on standard success metrics (< 1% change in SR), quantifying the viability of generated instructions in replacing human-annotated data. We finally discuss the applicability of our approach in enabling a generalizable evaluation of embodied navigation policies. To the best of our knowledge, ours is the first LLM-driven approach capable of generating “human-like” instructions in a platform-agnostic manner, without training.

#25 On the Role of Summary Content Units in Text Summarization Evaluation [PDF] [Copy] [Kimi] [REL]

Authors: Marcel Nawrath ; Agnieszka Nowak ; Tristan Ratz ; Danilo Walenta ; Juri Opitz ; Leonardo Ribeiro ; João Sedoc ; Daniel Deutsch ; Simon Mille ; Yixin Liu ; Sebastian Gehrmann ; Lining Zhang ; Saad Mahamood ; Miruna Clinciu ; Khyathi Chandu ; Yufang Hou

At the heart of the Pyramid evaluation method for text summarization lie human written summary content units (SCUs). These SCUs areconcise sentences that decompose a summary into small facts. Such SCUs can be used to judge the quality of a candidate summary, possibly partially automated via natural language inference (NLI) systems. Interestingly, with the aim to fully automate the Pyramid evaluation, Zhang and Bansal (2021) show that SCUs can be approximated by automatically generated semantic role triplets (STUs). However, several questions currently lack answers, in particular: i) Are there other ways of approximating SCUs that can offer advantages?ii) Under which conditions are SCUs (or their approximations) offering the most value? In this work, we examine two novel strategiesto approximate SCUs: generating SCU approximations from AMR meaning representations (SMUs) and from large language models (SGUs), respectively. We find that while STUs and SMUs are competitive, the best approximation quality is achieved by SGUs. We also show through a simple sentence-decomposition baseline (SSUs) that SCUs (and their approximations) offer the most value when rankingshort summaries, but may not help as much when ranking systems or longer summaries.