NDSS.2023 - Summer

| Total: 36

#1 A Robust Counting Sketch for Data Plane Intrusion Detection [PDF3] [Copy] [Kimi2] [REL]

Authors: Sian Kim (Ewha Womans University) ; Changhun Jung (Ewha Womans University) ; RhongHo Jang (Wayne State University) ; David Mohaisen (University of Central Florida) ; DaeHun Nyang (Ewha Womans University)

Demands are increasing to measure per-flow statistics in the data plane of high-speed switches. However, the resource constraint of the data plane is the biggest challenge. Although existing in-data plane solutions improve memory efficiency by accommodating Zipfian distribution of network traffic, they cannot adapt to various flow size distributions due to their static data structure. In other words, they cannot provide robust flow measurement under complex traffic patterns (e.g. under attacks). Recent works suggest dynamic data structure management schemes, but the high complexity is the major obstruction for the data plane deployment. In this paper, we present Count-Less sketch that enables robust and accurate network measurement under a wide variety of traffic distributions without dynamic data structure update. Count-Less applies a novel sketch update strategy, called {em minimum update}, which approximates the conservative update strategy of Count-MIN for fitting into in-network switches. Not only theoretical proof on Count-Less's estimation but also comprehensive experimental results are presented in terms of estimation accuracy and throughput of Count-Less, compared to Count-Min (baseline), Elastic sketch, and FCM sketch. More specifically, experiment results on security applications including estimation errors under various skewness parameters are provided. Count-Less is much more accurate in all measurement tasks than Count-Min and outperforms FCM sketch and Elastic sketch, state-of-the-art algorithms without the help of any special hardware like TCAM. To prove its feasibility in the data plane of a high-speed switch, Count-Less prototype on an ASIC-based programmable switch (Tofino) is implemented in P4 language and evaluated. In terms of data plane latency, Count-Less is 1.53x faster than FCM, while consuming 1.56x less resources such as hash bits, SRAM, and ALU of a programmable switch.

#2 A Systematic Study of the Consistency of Two-Factor Authentication User Journeys on Top-Ranked Websites [PDF] [Copy] [Kimi1] [REL]

Authors: Sanam Ghorbani Lyastani (CISPA Helmholtz Center for Information Security ; Saarland University) ; Michael Backes (CISPA Helmholtz Center for Information Security) ; Sven Bugiel (CISPA Helmholtz Center for Information Security)

Heuristics for user experience state that users will transfer their expectations from one product to another. A lack of consistency between products can increase users' cognitive friction, leading to frustration and rejection. This paper presents the first systematic study of the external, functional consistency of two-factor authentication user journeys on top-ranked websites. We find that these websites implement only a minimal number of design aspects consistently (e.g., naming and location of settings) but exhibit mixed design patterns for setup and usage of a second factor. Moreover, we find that some of the more consistently realized aspects, such as descriptions of two-factor authentication, have been described in the literature as problematic and adverse to user experience. Our results advocate for more general UX guidelines for 2FA implementers and raise new research questions about the 2FA user journeys.

#3 An OS-agnostic Approach to Memory Forensics [PDF] [Copy] [Kimi1] [REL]

Authors: Andrea Oliveri (EURECOM) ; Matteo Dell'Amico (University of Genoa) ; Davide Balzarotti (EURECOM)

The analysis of memory dumps presents unique challenges, as operating systems use a variety of (often undocumented) ways to represent data in memory. To solve this problem, forensics tools maintain collections of models that precisely describe the kernel data structures used by a handful of operating systems. However, these models cannot be generalized and developing new models may require a very long and tedious reverse engineering effort for closed source systems. In the last years, the tremendous increase in the number of IoT devices, smart-home appliances and cloud-hosted VMs resulted in a growing number of OSs which are not supported by current forensics tools. The way we have been doing memory forensics until today, based on handwritten models and rules, cannot simply keep pace with this variety of systems. To overcome this problem, in this paper we introduce the new concept of emph{OS-agnostic memory forensics}, which is based on techniques that can recover certain forensics information without emph{any} knowledge of the internals of the underlying OS. Our approach allows to automatically identify different types of data structures by using only their topological constraints and then supports two modes of investigation. In the first, it allows to traverse the recovered structures by starting from predetermined textit{seeds}, i.e., pieces of forensics-relevant information (such as a process name or an IP address) that an analyst knows emph{a priori} or that can be easily identified in the dump. Our experiments show that even a single seed can be sufficient to recover the entire list of processes and other important forensics data structures in dumps obtained from 14 different OSs, without any knowledge of the underlying kernels. In the second mode of operation, our system requires no seed but instead uses a set of heuristics to rank all memory data structures and present to the analysts only the most `promising' ones. Even in this case, our experiments show that an analyst can use our approach to easily identify forensics-relevant structured information in a truly OS-agnostic scenario.

#4 AuthentiSense: A Scalable Behavioral Biometrics Authentication Scheme using Few-Shot Learning for Mobile Platforms [PDF] [Copy] [Kimi1] [REL]

Authors: Hossein Fereidooni (Technical University of Darmstadt) ; Jan Koenig (University of Wuerzburg) ; Phillip Rieger (Technical University of Darmstadt) ; Marco Chilese (Technical University of Darmstadt) ; Bora Goekbakan (KOBIL ; Germany) ; Moritz Finke (University of Wuerzburg) ; Alexandra Dmitrienko (University of Wuerzburg) ; Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Mobile applications are widely used for online services sharing a large amount of personal data online. One-time authentication techniques such as passwords and physiological biometrics (e.g., fingerprint, face, and iris) have their own advantages but also disadvantages since they can be stolen or emulated, and do not prevent access to the underlying device, once it is unlocked. To address these challenges, complementary authentication systems based on behavioural biometrics have emerged. The goal is to continuously profile users based on their interaction with the mobile device. However, existing behavioural authentication schemes are not (i) user-agnostic meaning that they cannot dynamically handle changes in the user-base without model re-training, or (ii) do not scale well to authenticate millions of users. In this paper, we present AuthentiSense, a user-agnostic, scalable, and efficient behavioural biometrics authentication system that enables continuous authentication and utilizes only motion patterns (i.e., accelerometer, gyroscope, and magnetometer data) while users interact with mobile apps. Our approach requires neither manually engineered features nor a significant amount of data for model training. We leverage a few-shot learning technique, called Siamese network, to authenticate users at a large scale. We perform a systematic measurement study and report the impact of the parameters such as interaction time needed for authentication and n-shot verification (comparison with enrollment samples) at the recognition stage. Remarkably, AuthentiSense achieves high accuracy of up to 97% in terms of F1-score even when evaluated in a few-shot fashion that requires only a few behaviour samples per user (3 shots). Our approach accurately authenticates users only after 1 second of user interaction. For AuthentiSense, we report a FAR and FRR of 0.023 and 0.057, respectively.

#5 Automata-Based Automated Detection of State Machine Bugs in Protocol Implementations [PDF] [Copy] [Kimi1] [REL]

Authors: Paul Fiterau-Brostean (Uppsala University ; Sweden) ; Bengt Jonsson (Uppsala University ; Sweden) ; Konstantinos Sagonas (Uppsala University ; Sweden and National Technical University of Athens ; Greece) ; Fredrik Tåquist (Uppsala University ; Sweden)

Implementations of stateful security protocols must carefully manage the type and order of exchanged messages and cryptographic material, by maintaining a state machine which keeps track of protocol progress. Corresponding implementation flaws, called emph{state machine bugs}, can constitute serious security vulnerabilities. We present an automated black-box technique for detecting state machine bugs in implementations of stateful network protocols. It takes as input a catalogue of state machine bugs for the protocol, each specified as a finite automaton which accepts sequences of messages that exhibit the bug, and a (possibly inaccurate) model of the implementation under test, typically obtained by model learning. Our technique constructs the set of sequences that (according to the model) can be performed by the implementation and that (according to the automaton) expose the bug. These sequences are then transformed to test cases on the actual implementation to find a witness for the bug or filter out false alarms. We have applied our technique on three widely-used implementations of SSH servers and nine different DTLS server and client implementations, including their most recent versions. Our technique easily reproduced all bugs identified by security researchers before, and produced witnesses for them. More importantly, it revealed several previously unknown bugs in the same implementations, two new vulnerabilities, and a variety of new bugs and non-conformance issues in newer versions of the same SSH and DTLS implementations.

#6 BinaryInferno: A Semantic-Driven Approach to Field Inference for Binary Message Formats [PDF1] [Copy] [Kimi1] [REL]

Authors: Jared Chandler (Tufts University) ; Adam Wick (Fastly) ; Kathleen Fisher (DARPA)

We present BinaryInferno, a fully automatic tool for reverse engineering binary message formats. Given a set of messages with the same format, the tool uses an ensemble of detectors to infer a collection of partial descriptions and then automatically integrates the partial descriptions into a semantically-meaningful description that can be used to parse future packets with the same format. As its ensemble, BinaryInferno uses a modular and extensible set of targeted detectors, including detectors for identifying atomic data types such as IEEE floats, timestamps, and integer length fields; for finding boundaries between adjacent fields using Shannon entropy; and for discovering variable-length sequences by searching for common serialization idioms. We evaluate BinaryInferno's performance on sets of packets drawn from 10 binary protocols. Our semantic-driven approach significantly decreases false positive rates and increases precision when compared to the previous state of the art. For top-level protocols we identify field boundaries with an average precision of 0.69, an average recall of 0.73, and an average false positive rate of 0.04, significantly outperforming five other state-of-the-art protocol reverse engineering tools on the same data sets: AWRE (0.18, 0.03, 0.04), FIELDHUNTER (0.68, 0.37, 0.01), NEMESYS (0.31, 0.44, 0.11), NETPLIER (0.29, 0.75, 0.22), and NETZOB (0.57, 0.42, 0.03). We believe our improvements in precision and false positive rates represent what our target user most wants: semantically meaningful descriptions with fewer false positives.

#7 Brokenwire : Wireless Disruption of CCS Electric Vehicle Charging [PDF1] [Copy] [Kimi1] [REL]

Authors: Sebastian Köhler (University of Oxford) ; Richard Baker (University of Oxford) ; Martin Strohmeier (armasuisse Science + Technology) ; Ivan Martinovic (University of Oxford)

We present a novel attack against the Combined Charging System, one of the most widely used DC rapid charging technologies for electric vehicles (EVs). Our attack, Brokenwire, interrupts necessary control communication between the vehicle and charger, causing charging sessions to abort. The attack requires only temporary physical proximity and can be conducted wirelessly from a distance, allowing individual vehicles or entire fleets to be disrupted stealthily and simultaneously. In addition, it can be mounted with off-the-shelf radio hardware and minimal technical knowledge. By exploiting CSMA/CA behavior, only a very weak signal needs to be induced into the victim to disrupt communication — exceeding the effectiveness of broadband noise jamming by three orders of magnitude. The exploited behavior is a required part of the HomePlug Green PHY, DIN 70121 & ISO 15118 standards and all known implementations exhibit it. We first study the attack in a controlled testbed and then demonstrate it against eight vehicles and 20 chargers in real deployments. We find the attack to be successful in the real world, at ranges up to 47 m, for a power budget of less than 1 W. We further show that the attack can work between the floors of a building (e.g., multi-story parking), through perimeter fences, and from 'drive-by' attacks. We present a heuristic model to estimate the number of vehicles that can be attacked simultaneously for a given output power. Brokenwire has immediate implications for a substantial proportion of the around 12 million battery EVs on the roads worldwide — and profound effects on the new wave of electrification for vehicle fleets, both for private enterprise and crucial public services, as well as electric buses, trucks, and small ships. As such, we conducted a disclosure to the industry and discussed a range of mitigation techniques that could be deployed to limit the impact.

#8 Browser Permission Mechanisms Demystified [PDF] [Copy] [Kimi1] [REL]

Authors: Kazuki Nomoto (Waseda University) ; Takuya Watanabe (NTT Social Informatics Laboratories) ; Eitaro Shioji (NTT Social Informatics Laboratories) ; Mitsuaki Akiyama (NTT Social Informatics Laboratories) ; Tatsuya Mori (Waseda University/NICT/RIKEN AIP)

Modern Web services provide rich content by accessing resources on user devices, including hardware devices such as cameras, microphones, and GPSs. Web browser vendors have adopted permission mechanisms that achieve appropriate control over access to such resources to protect user privacy. The permission mechanism gives users the ability to grant or deny their browser access to resources for each website. Despite the importance of permission mechanisms in protecting user privacy, previous studies have not been conducted to systematically understand their behavior and implementation. In this study, we developed Permium, a web browser analysis framework that automatically analyzes the behavior of permission mechanisms implemented by various browsers. Using the Permium framework, we systematically studied the behavior of permission mechanisms for 22 major browser implementations running on five different operating systems, including mobile and desktop. We determined that the implementation and behavior of permission mechanisms are fragmented and inconsistent between operating systems, even for the same browser (i.e., Windows Chrome vs. iOS Chrome) and that the implementation inconsistencies can lead to privacy risks. Based on the behavior and implementation inconsistencies of the permission mechanism revealed by our measurement study, we developed two proof-of-concept attacks and evaluated their feasibility. The first attack uses the permission information collected by exploiting the inconsistencies to secretly track the user. The second attack aims to create a situation in which the user cannot correctly determine the origin of the permission request, and the user incorrectly grants permission to a malicious site. Finally, we clarify the technical issues that must be standardized in privacy mechanisms and provide recommendations to OS/browser vendors to mitigate the threats identified in this study.

#9 ChargePrint: A Framework for Internet-Scale Discovery and Security Analysis of EV Charging Management Systems [PDF1] [Copy] [Kimi1] [REL]

Authors: Tony Nasr (Concordia University) ; Sadegh Torabi (George Mason University) ; Elias Bou-Harb (University of Texas at San Antonio) ; Claude Fachkha (University of Dubai) ; Chadi Assi (Concordia University)

Electric Vehicle Charging Management Systems (EVCMS) are a collection of specialized software that allow users to remotely operate Electric Vehicle Charging Stations (EVCS). With the increasing number of deployed EVCS to support the growing global EV fleet, the number of EVCMS are consequently growing, which introduces a new attack surface. In this paper, we propose a novel multi-stage framework, ChargePrint, to discover Internet-connected EVCMS and investigate their security posture. ChargePrint leverages identifiers extracted from a small seed of EVCMS to extend the capabilities of device search engines through iterative fingerprinting and a combination of classification and clustering approaches. Using initial seeds from 1,800 discovered hosts that deployed 9 distinct EVCMS, we identified 27,439 online EVCS instrumented by 44 unique EVCMS. Consequently, our in-depth security analysis highlights the insecurity of the deployed EVCMS by uncovering 120 0-day vulnerabilities, which shed light on the feasibility of cyber attacks against the EVCS, its users, and the connected power grid. Finally, while we recommend countermeasures to mitigate future threats, we contribute to the security of the EVCS ecosystem by conducting a Coordinated Vulnerability Disclosure (CVD) effort with system developers/vendors who acknowledged and assigned the discovered vulnerabilities more than 20 CVE-IDs.

#10 DARWIN: Survival of the Fittest Fuzzing Mutators [PDF] [Copy] [Kimi1] [REL]

Authors: Patrick Jauernig (Technical University of Darmstadt) ; Domagoj Jakobovic (University of Zagreb ; Croatia) ; Stjepan Picek (Radboud University and TU Delft) ; Emmanuel Stapf (Technical University of Darmstadt) ; Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Fuzzing is an automated software testing technique broadly adopted by the industry. A popular variant is mutation-based fuzzing, which discovers a large number of bugs in practice. While the research community has studied mutation-based fuzzing for years now, the algorithms' interactions within the fuzzer are highly complex and can, together with the randomness in every instance of a fuzzer, lead to unpredictable effects. Most efforts to improve this fragile interaction focused on optimizing seed scheduling. However, real-world results like Google's FuzzBench highlight that these approaches do not consistently show improvements in practice. Another approach to improve the fuzzing process algorithmically is optimizing mutation scheduling. Unfortunately, existing mutation scheduling approaches also failed to convince because of missing real-world improvements or too many user-controlled parameters whose configuration requires expert knowledge about the target program. This leaves the challenging problem of cleverly processing test cases and achieving a measurable improvement unsolved. We present DARWIN, a novel mutation scheduler and the first to show fuzzing improvements in a realistic scenario without the need to introduce additional user-configurable parameters, opening this approach to the broad fuzzing community. DARWIN uses an Evolution Strategy to systematically optimize and adapt the probability distribution of the mutation operators during fuzzing. We implemented a prototype based on the popular general-purpose fuzzer AFL. DARWIN significantly outperforms the state-of-the-art mutation scheduler and the AFL baseline in our own coverage experiment, in FuzzBench, and by finding 15 out of 21 bugs the fastest in the MAGMA benchmark. Finally, DARWIN found 20 unique bugs (including one novel bug), 66% more than AFL, in widely-used real-world applications.

#11 Detecting Unknown Encrypted Malicious Traffic in Real Time via Flow Interaction Graph Analysis [PDF5] [Copy] [Kimi2] [REL]

Authors: Chuanpu Fu (Tsinghua University) ; Qi Li (Tsinghua University) ; Ke Xu (Tsinghua University)

Nowadays traffic on the Internet has been widely encrypted to protect its confidentiality and privacy. However, traffic encryption is always abused by attackers to conceal their malicious behaviors. Since the encrypted malicious traffic has similar features to benign flows, it can easily evade traditional detection methods. Particularly, the existing encrypted malicious traffic detection methods are supervised and they rely on the prior knowledge of known attacks (e.g., labeled datasets). Detecting unknown encrypted malicious traffic in real time, which does not require prior domain knowledge, is still an open problem. In this paper, we propose HyperVision, a realtime unsupervised machine learning (ML) based malicious traffic detection system. Particularly, HyperVision is able to detect unknown patterns of encrypted malicious traffic by utilizing a compact inmemory graph built upon the traffic patterns. The graph captures flow interaction patterns represented by the graph structural features, instead of the features of specific known attacks. We develop an unsupervised graph learning method to detect abnormal interaction patterns by analyzing the connectivity, sparsity, and statistical features of the graph, which allows HyperVision to detect various encrypted attack traffic without requiring any labeled datasets of known attacks. Moreover, we establish an information theory model to demonstrate that the information preserved by the graph approaches the ideal theoretical bound. We show the performance of HyperVision by real-world experiments with 92 datasets including 48 attacks with encrypted malicious traffic. The experimental results illustrate that HyperVision achieves at least 0.92 AUC and 0.86 F1, which significantly outperform the state-of-the-art methods. In particular, more than 50% attacks in our experiments can evade all these methods. Moreover, HyperVision achieves at least 80.6 Gb/s detection throughput with the average detection latency of 0.83s.

#12 Efficient Dynamic Proof of Retrievability for Cold Storage [PDF] [Copy] [Kimi1] [REL]

Authors: Tung Le (Virginia Tech) ; Pengzhi Huang (Cornell University) ; Attila A. Yavuz (University of South Florida) ; Elaine Shi (CMU) ; Thang Hoang (Virginia Tech)

Storage-as-a-service (STaaS) permits the client to outsource her data to the cloud thereby, reducing data management and maintenance costs. However, STaaS also brings significant data integrity and soundness concerns since the storage provider might not keep the client data intact and retrievable all the time (e.g., cost saving via deletions). Proof of Retrievability (PoR) can validate the integrity and retrievability of remote data effectively. This technique can be useful for regular audits to monitor data compromises, as well as to comply with standard data regulations. In particular, cold storage applications (e.g., MS Azure, Amazon Glacier) require regular and frequent audits but with less frequent data modification. Yet, despite their merits, existing PoR techniques generally focus on other metrics (e.g., low storage, fast update, metadata privacy) but not audit efficiency (e.g., low audit time, small proof size). Hence, there is a need to develop new PoR techniques that achieve efficient data audit while preserving update and retrieval performance. In this paper, we propose Porla, a new PoR framework that permits efficient data audit, update, and retrieval functionalities simultaneously. Porla permits data audit in both private and public settings, each of which features asymptotically (and concretely) smaller audit-proof size and lower audit time than all the prior works while retaining the same asymptotic data update overhead. Porla achieves all these properties by composing erasure codes with verifiable computation techniques which, to our knowledge, is a new approach to PoR design. We address several challenges that arise in such a composition by creating a new homomorphic authenticated commitment scheme, which can be of independent interest. We fully implemented Porla and evaluated its performance on commodity cloud (i.e., Amazon EC2) under various settings. Experimental results demonstrated that Porla achieves two to four orders of magnitude smaller audit proof size with 4× – 1,800× lower audit time than all prior schemes in both private and public audit settings at the cost of only 2× – 3× slower update.

#13 Evasion Attacks and Defenses on Smart Home Physical Event Verification [PDF1] [Copy] [Kimi1] [REL]

Authors: Muslum Ozgur Ozmen (Purdue University) ; Ruoyu Song (Purdue University) ; Habiba Farrukh (Purdue University) ; Z. Berkay Celik (Purdue University)

In smart homes, when an actuator's state changes, it sends an event notification to the IoT hub to report this change (e.g., the door is unlocked). Prior works have shown that event notifications are vulnerable to spoofing and masking attacks. In event spoofing, an adversary reports to the IoT hub a fake event notification that did not physically occur. In event masking, an adversary suppresses the notification of an event that physically occurred. These attacks create inconsistencies between physical and cyber states of actuators, enabling an adversary to indirectly gain control over safety-critical devices by triggering IoT apps. To mitigate these attacks, event verification systems (EVS), or broadly IoT anomaly detection systems, leverage physical event fingerprints that describe the relations between events and their influence on sensor readings. However, smart homes have complex physical interactions between events and sensors that characterize the event fingerprints. Our study of the recent EVS, unfortunately, has revealed that they widely ignore such interactions, which enables an adversary to evade these systems and launch successful event spoofing and masking attacks without getting detected. In this paper, we first explore the evadable physical event fingerprints and show that an adversary can realize them to bypass the EVS given the same threat model. We develop two defenses, EVS software patching and sensor placement with the interplay of physical modeling and formal analysis, to generate robust physical event fingerprints and demonstrate how they can be integrated into the EVS. We evaluate the effectiveness of our approach in two smart home settings that contain 12 actuators and 16 sensors when two different state-of-the-art EVS are deployed. Our experiments demonstrate that 71% of their physical fingerprints are vulnerable to evasion. By incorporating our approach, they build robust physical event fingerprints, and thus, properly mitigate realistic attack vectors.

#14 Extrapolating Formal Analysis to Uncover Attacks in Bluetooth Passkey Entry Pairing [PDF] [Copy] [Kimi1] [REL]

Authors: Mohit Kumar Jangid (The Ohio State University) ; Yue Zhang (Computer Science & Engineering ; Ohio State University) ; Zhiqiang Lin (The Ohio State University)

Bluetooth is a leading wireless communication technology used by billions of Internet of Things (IoT) devices today. Its ubiquity demands systematic security scrutiny. A key ingredient in Bluetooth security is secure pairing, which includes Numeric comparison (NC) and Passkey Entry (PE). However, most prior formal efforts have considered only NC, and PE has not yet been formally studied in depth. In this paper, we propose a detailed formal analysis of the PE protocol. In particular, we present a generic formal model, built using Tamarin, to verify the security of PE by precisely capturing the protocol behaviors and attacker capabilities. Encouragingly, it rediscovers three known attacks (confusion attacks, static passcode attacks, and reflection attacks), and more importantly, also uncovers two new attacks (group guessing attacks and ghost attacks) spanning across diverse attack vectors (e.g., static variable reuse, multi-threading, reflection, human error, and compromise device). Finally, after applying fixes to each vulnerability, our model further proves the confidentiality and authentication properties of the PE protocol using an inductive base model.

#15 Faster Secure Comparisons with Offline Phase for Efficient Private Set Intersection [PDF] [Copy] [Kimi1] [REL]

Authors: Florian Kerschbaum (University of Waterloo) ; Erik-Oliver Blass (Airbus) ; Rasoul Akhavan Mahdavi (University of Waterloo)

In a Private section intersection (PSI) protocol, Alice and Bob compute the intersection of their respective sets without disclosing any element not in the intersection. PSI protocols have been extensively studied in the literature and are deployed in industry. With state-of-the-art protocols achieving optimal asymptotic complexity, performance improvements are rare and can only improve complexity constants. In this paper, we present a new private, extremely efficient comparison protocol that leads to a PSI protocol with low constants. A useful property of our comparison protocol is that it can be divided into an online and an offline phase. All expensive cryptographic operations are performed during the offline phase, and the online phase performs only four fast field operations per comparison. This leads to an incredibly fast online phase, and our evaluation shows that it outperforms related work, including KKRT (CCS'16), VOLE-PSI (EuroCrypt'21), and OKVS (Crypto'21). We also evaluate standard approaches to implement the offline phase using different trust assumptions: cryptographic, hardware, and a third party ("dealer model").

#16 Fusion: Efficient and Secure Inference Resilient to Malicious Servers [PDF1] [Copy] [Kimi2] [REL]

Authors: Caiqin Dong (Jinan University) ; Jian Weng (Jinan University) ; Jia-Nan Liu (Jinan University) ; Yue Zhang (Jinan University) ; Yao Tong (Guangzhou Fongwell Data Limited Company) ; Anjia Yang (Jinan University) ; Yudan Cheng (Jinan University) ; Shun Hu (Jinan University)

In secure machine learning inference, most of the schemes assume that the server is semi-honest (honestly following the protocol but attempting to infer additional information). However, the server may be malicious (e.g., using a low-quality model or deviating from the protocol) in the real world. Although a few studies have considered a malicious server that deviates from the protocol, they ignore the verification of model accuracy (where the malicious server uses a low-quality model) meanwhile preserving the privacy of both the server's model and the client's inputs. To address these issues, we propose textit{Fusion}, where the client mixes the public samples (which have known query results) with their own samples to be queried as the inputs of multi-party computation to jointly perform the secure inference. Since a server that uses a low-quality model or deviates from the protocol can only produce results that can be easily identified by the client, textit{Fusion} forces the server to behave honestly, thereby addressing all those aforementioned issues without leveraging expensive cryptographic techniques. Our evaluation indicates that textit{Fusion} is 48.06$times$ faster and uses 30.90$times$ less communication than the existing maliciously secure inference protocol (which currently does not support the verification of the model accuracy). In addition, to show the scalability, we conduct ImageNet-scale inference on the practical ResNet50 model and it costs 8.678 minutes and 10.117 GiB of communication in a WAN setting, which is 1.18$times$ faster and has 2.64$times$ less communication than those of the semi-honest protocol.

#18 Hope of Delivery: Extracting User Locations From Mobile Instant Messengers [PDF] [Copy] [Kimi] [REL]

Authors: Theodor Schnitzler (Research Center Trustworthy Data Science and Security ; TU Dortmund ; and Ruhr-Universität Bochum) ; Katharina Kohls (Radboud University) ; Evangelos Bitsikas (Northeastern University and New York University Abu Dhabi) ; Christina Pöpper (New York University Abu Dhabi)

Mobile instant messengers such as WhatsApp use delivery status notifications in order to inform users if a sent message has successfully reached its destination. This is useful and important information for the sender due to the often asynchronous use of the messenger service. However, as we demonstrate in this paper, this standard feature opens up a timing side channel with unexpected consequences for user location privacy. We investigate this threat conceptually and experimentally for three widely spread instant messengers. We validate that this information leak even exists in privacy-friendly messengers such as Signal and Threema. Our results show that, after a training phase, a messenger user can distinguish different locations of the message receiver. Our analyses involving multiple rounds of measurements and evaluations show that the timing side channel persists independent of distances between receiver locations -- the attack works both for receivers in different countries as well as at small scale in one city. For instance, out of three locations within the same city, the sender can determine the correct one with more than 80% accuracy. Thus, messenger users can secretly spy on each others' whereabouts when sending instant messages. As our countermeasure evaluation shows, messenger providers could effectively disable the timing side channel by randomly delaying delivery confirmations within the range of a few seconds. For users themselves, the threat is harder to prevent since there is no option to turn off delivery confirmations.

#19 Let Me Unwind That For You: Exceptions to Backward-Edge Protection [PDF] [Copy] [Kimi] [REL]

Authors: Victor Duta (Vrije Universiteit Amsterdam) ; Fabian Freyer (University of California San Diego) ; Fabio Pagani (University of California ; Santa Barbara) ; Marius Muench (Vrije Universiteit Amsterdam) ; Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Backward-edge control-flow hijacking via stack buffer overflow is the holy grail of software exploitation. The ability to directly control critical stack data and the hijacked target makes this exploitation strategy particularly appealing for attackers. As a result, the community has deployed strong backward-edge protections such as shadow stacks or stack canaries, forcing attackers to resort to less ideal e.g., heap-based exploitation strategies. However, such mitigations commonly rely on one key assumption, namely an attacker relying on return address corruption to directly hijack control flow upon function return. In this paper, we present *exceptions* to this assumption and show attacks based on backward-edge control-flow hijacking *without* the direct hijacking are possible. Specifically, we demonstrate that stack corruption can cause exception handling to act as a *confused deputy* and mount backward-edge control-flow hijacking attacks on the attacker’s behalf. This strategy provides overlooked opportunities to divert execution to attacker-controlled catch handlers (a paradigm we term Catch Handler Oriented Programming or CHOP) and craft powerful primitives such as arbitrary code execution or arbitrary memory writes. We find CHOP-style attacks to work across multiple platforms (Linux, Windows, macOS, Android and iOS). To analyze the uncovered attack surface, we survey popular open-source packages and study the applicability of the proposed exploitation techniques. Our analysis shows that suitable exception handling targets are ubiquitous in C++ programs and exploitable exception handlers are common. We conclude by presenting three end-to-end exploits on real-world software and proposing changes to deployed mitigations to address CHOP.

#20 Machine Unlearning of Features and Labels [PDF] [Copy] [Kimi1] [REL]

Authors: Alexander Warnecke (TU Braunschweig) ; Lukas Pirch (TU Braunschweig) ; Christian Wressnegger (Karlsruhe Institute of Technology (KIT)) ; Konrad Rieck (TU Braunschweig)

Removing information from a machine learning model is a non-trivial task that requires to partially revert the training process. This task is unavoidable when sensitive data, such as credit card numbers or passwords, accidentally enter the model and need to be removed afterwards. Recently, different concepts for machine unlearning have been proposed to address this problem. While these approaches are effective in removing individual data points, they do not scale to scenarios where larger groups of features and labels need to be reverted. In this paper, we propose the first method for unlearning features and labels. Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters. It enables to adapt the influence of training data on a learning model retrospectively, thereby correcting data leaks and privacy issues. For learning models with strongly convex loss functions, our method provides certified unlearning with theoretical guarantees. For models with non-convex losses, we empirically show that unlearning features and labels is effective and significantly faster than other strategies.

#21 MyTEE: Own the Trusted Execution Environment on Embedded Devices [PDF] [Copy] [Kimi1] [REL]

Authors: Seungkyun Han (Chungnam National University) ; Jinsoo Jang (Chungnam National University)

We propose a solution, MyTEE, that enables a trusted execution environment (TEE) to be built even in worst-case environments wherein major hardware security primitives (e.g., ARM TrustZone extensions for memory access control) are absent. Crafting page tables for memory isolation, filtering DMA packets, and enabling secure IO exist at the core of MyTEE. Particularly for secure IO, we shield the IO buffers and memory-mapped registers of the controllers and securely escalate the privilege of the partial code block of the device drivers to provide permission to access the protected objects. By doing so, the need to host the device driver in the TEE (in whole or in part), which can potentially introduce a new attack surface, is exempted. The proof-of-concept (PoC) of MyTEE is implemented on the Raspberry Pi 3 board, which does not support most of the important security primitives for building the TEE. Additionally, three secure IO examples with the hardware TPM, framebuffer, and USB keyboard are demonstrated to show the feasibility of our approach.

#22 On the Anonymity of Peer-To-Peer Network Anonymity Schemes Used by Cryptocurrencies [PDF] [Copy] [Kimi1] [REL]

Authors: Piyush Kumar Sharma (imec-COSIC ; KU Leuven) ; Devashish Gosain (Max Planck Institute for Informatics) ; Claudia Diaz (Nym Technologies ; SA and imec-COSIC ; KU Leuven)

Cryptocurrency systems can be subject to deanonymization attacks by exploiting the network-level communication on their peer-to-peer network. Adversaries who control a set of colluding node(s) within the peer-to-peer network can observe transactions being exchanged and infer the parties involved. Thus, various network anonymity schemes have been proposed to mitigate this problem, with some solutions providing theoretical anonymity guarantees. In this work, we model such peer-to-peer network anonymity solutions and evaluate their anonymity guarantees. To do so, we propose a novel framework that uses Bayesian inference to obtain the probability distributions linking transactions to their possible originators. We characterize transaction anonymity with those distributions, using entropy as metric of adversarial uncertainty on the originator's identity. In particular, we model Dandelion, Dandelion++, and Lightning Network. We study different configurations and demonstrate that none of them offers acceptable anonymity to their users. For instance, our analysis reveals that in the widely deployed Lightning Network, with $1%$ strategically chosen colluding nodes the adversary can uniquely determine the originator for $approx50%$ of the total transactions in the network. In Dandelion, an adversary that controls $15%$ of the nodes has on average uncertainty among only $8$ possible originators. Moreover, we observe that due to the way Dandelion and Dandelion++ are designed, increasing the network size does not correspond to an increase in the anonymity set of potential originators. Alarmingly, our longitudinal analysis of Lightning Network reveals rather an inverse trend---with the growth of the network the overall anonymity decreases.

#23 POSE: Practical Off-chain Smart Contract Execution [PDF] [Copy] [Kimi1] [REL]

Authors: Tommaso Frassetto (Technical University of Darmstadt) ; Patrick Jauernig (Technical University of Darmstadt) ; David Koisser (Technical University of Darmstadt) ; David Kretzler (Technical University of Darmstadt) ; Benjamin Schlosser (Technical University of Darmstadt) ; Sebastian Faust (Technical University of Darmstadt) ; Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Smart contracts enable users to execute payments depending on complex program logic. Ethereum is the most notable example of a blockchain that supports smart contracts leveraged for countless applications including games, auctions and financial products. Unfortunately, the traditional method of running contract code on-chain is very expensive, for instance, on the Ethereum platform, fees have dramatically increased, rendering the system unsuitable for complex applications. A prominent solution to address this problem is to execute code off-chain and only use the blockchain as a trust anchor. While there has been significant progress in developing off-chain systems over the last years, current off-chain solutions suffer from various drawbacks including costly blockchain interactions, lack of data privacy, huge capital costs from locked collateral, or supporting only a restricted set of applications. In this paper, we present POSE—a practical off-chain protocol for smart contracts that addresses the aforementioned shortcomings of existing solutions. POSE leverages a pool of Trusted Execution Environments (TEEs) to execute the computation efficiently and to swiftly recover from accidental or malicious failures. We show that POSE provides strong security guarantees even if a large subset of parties is corrupted. We evaluate our proof-of-concept implementation with respect to its efficiency and effectiveness.

#24 Post-GDPR Threat Hunting on Android Phones: Dissecting OS-level Safeguards of User-unresettable Identifiers [PDF] [Copy] [Kimi1] [REL]

Authors: Mark Huasong Meng (National University of Singapore) ; Qing Zhang (ByteDance) ; Guangshuai Xia (ByteDance) ; Yuwei Zheng (ByteDance) ; Yanjun Zhang (The University of Queensland) ; Guangdong Bai (The University of Queensland) ; Zhi Liu (ByteDance) ; Sin G. Teo (Agency for Science ; Technology and Research) ; Jin Song Dong (National University of Singapore)

Ever since its genesis, Android has enabled apps to access data and services on mobile devices. This however involves a wide variety of user-unresettable identifiers (UUIs), e.g., the MAC address, which are associated with a device permanently. Given their privacy sensitivity, Android has tightened its UUI access policy since its version 10, in response to the increasingly strict privacy protection regulations around the world. Non-system apps are restricted from accessing them and are required to use user-resettable alternatives such as advertising IDs. In this work, we conduct a systematic study on the effectiveness of the UUI safeguards on Android phones including both Android Open Source Project (AOSP) and Original Equipment Manufacturer (OEM) phones. To facilitate our large-scale study, we propose a set of analysis techniques that discover and assess UUI access channels. Our approach features a hybrid analysis that consists of static program analysis of Android Framework and forensic analysis of OS images to uncover access channels. These channels are then tested with differential analysis to identify weaknesses that open any attacking opportunity. We have conducted a vulnerability assessment on 13 popular phones of 9 major manufacturers, most of which are top-selling and installed with the recent Android versions. Our study reveals that UUI mishandling pervasively exists, evidenced by 51 unique vulnerabilities found (8 listed by CVE). Our work unveils the status quo of the UUI protection in Android phones, complementing the existing studies that mainly focus on apps' UUI harvesting behaviors. Our findings should raise an alert to phone manufacturers and would encourage policymakers to further extend the scope of regulations with device-level data protection.

#25 PPA: Preference Profiling Attack Against Federated Learning [PDF] [Copy] [Kimi2] [REL]

Authors: Chunyi Zhou (Nanjing University of Science and Technology) ; Yansong Gao (Nanjing University of Science and Technology) ; Anmin Fu (Nanjing University of Science and Technology) ; Kai Chen (Chinese Academy of Science) ; Zhiyang Dai (Nanjing University of Science and Technology) ; Zhi Zhang (CSIRO's Data61) ; Minhui Xue (CSIRO's Data61) ; Yuqing Zhang (University of Chinese Academy of Science)

Federated learning (FL) trains a global model across a number of decentralized users, each with a local dataset. Compared to traditional centralized learning, FL does not require direct access to local datasets and thus aims to mitigate data privacy concerns. However, data privacy leakage in FL still exists due to inference attacks, including membership inference, property inference, and data inversion. In this work, we propose a new type of privacy inference attack, coined Preference Profiling Attack (PPA), that accurately profiles the private preferences of a local user, e.g., most liked (disliked) items from the client's online shopping and most common expressions from the user's selfies. In general, PPA can profile top-$k$ (i.e., $k$ = $1, 2, 3$ and $k = 1$ in particular) preferences contingent on the local client (user)'s characteristics. Our key insight is that the gradient variation of a local user's model has a distinguishable sensitivity to the sample proportion of a given class, especially the majority (minority) class. By observing a user model's gradient sensitivity to a class, PPA can profile the sample proportion of the class in the user's local dataset, and thus textit{the user's preference of the class} is exposed. The inherent statistical heterogeneity of FL further facilitates PPA. We have extensively evaluated the PPA's effectiveness using four datasets (MNIST, CIFAR10, RAF-DB and Products-10K). Our results show that PPA achieves 90% and 98% top-$1$ attack accuracy to the MNIST and CIFAR10, respectively. More importantly, in real-world commercial scenarios of shopping (i.e., Products-10K) and social network (i.e., RAF-DB), PPA gains a top-$1$ attack accuracy of 78% in the former case to infer the most ordered items (i.e., as a commercial competitor), and 88% in the latter case to infer a victim user's most often facial expressions, e.g., disgusted. The top-$3$ attack accuracy and top-$2$ accuracy is up to 88% and 100% for the Products-10K and RAF-DB, respectively. We also show that PPA is insensitive to the number of FL's local users (up to 100 we tested) and local training epochs (up to 20 we tested) used by a user. Although existing countermeasures such as dropout and differential privacy protection can lower the PPA's accuracy to some extent, they unavoidably incur notable deterioration to the global model. The source code is available at https://github.com/PPAattack.