2024.12.05.627039

Total: 1

#1 Divalent siRNA for prion disease [PDF] [Copy] [Kimi] [REL]

Authors: Juliana E Gentile, Taylor L Corridon, Dimas Echeverria, Fiona E Serack, Zachary E Kennedy, Corrie L Gallant-Behm, Matthew R Hassler, Garth Kinberger, Nikita G Kamath, Katherine Y Gross, Yuan Lian, Rachael Miller, Kendrick DeSouza-Lenz, Michael Howard, Kenia Guzman, Nathan Chan, Vanessa Laversenne, Daniel T Curtis, Kevin Fettes, Marc Lemaitre, Gregg Cappon, Aimee L Jackson, Ken Yamada, Julia F Alterman, Alissa A Coffey, Eric Vallabh Minikel, Anastasia Khvorova, Sonia M Vallabh

Pharmacologic lowering of PrP expression is efficacious against prion disease in animal models and is now being tested clinically. 50% lowering of PrP increases both survival time and healthy life in prion-infected mice, but does not prevent symptom onset nor halt disease progression. Additional drug candidates should seek to reduce PrP expression to even lower levels. Divalent siRNA is a novel oligonucleotide drug modality with promising potency, durability, and biodistribution data in preclinical models, inspiring us to seek in this technology a new drug candidate for prion disease. Here, we first identify a tool compound against the mouse PrP gene and establish the efficacy of PrP-lowering divalent siRNA in prion-infected mice. We then introduce humanized transgenic mouse lines harboring the full non-coding sequence of the human PrP gene as tools for identifying human sequence-targeted drugs. We identify a highly potent siRNA sequence against the human PrP gene and determine that a chemical scaffold incorporating extended nucleic acid and a 3′ antisense tail unmatched to the RNA target yields superior potency. We nominate PrP-lowering divalent siRNA 2439-s4 as a new drug candidate for human prion disease.

Subject: Neuroscience

Publish: 2025-01-28