12096@AAAI

Total: 1

#1 Planning and Learning for Decentralized MDPs With Event Driven Rewards [PDF] [Copy] [Kimi]

Authors: Tarun Gupta ; Akshat Kumar ; Praveen Paruchuri

Decentralized (PO)MDPs provide a rigorous framework for sequential multiagent decision making under uncertainty. However, their high computational complexity limits the practical impact. To address scalability and real-world impact, we focus on settings where a large number of agents primarily interact through complex joint-rewards that depend on their entire histories of states and actions. Such history-based rewards encapsulate the notion of events or tasks such that the team reward is given only when the joint-task is completed. Algorithmically, we contribute---1) A nonlinear programming (NLP) formulation for such event-based planning model; 2) A probabilistic inference based approach that scales much better than NLP solvers for a large number of agents; 3) A policy gradient based multiagent reinforcement learning approach that scales well even for exponential state-spaces. Our inference and RL-based advances enable us to solve a large real-world multiagent coverage problem modeling schedule coordination of agents in a real urban subway network where other approaches fail to scale.