2020.iwslt-1.5@ACL

Total: 1

#1 End-to-End Simultaneous Translation System for IWSLT2020 Using Modality Agnostic Meta-Learning [PDF] [Copy] [Kimi1] [REL]

Authors: Hou Jeung Han, Mohd Abbas Zaidi, Sathish Reddy Indurthi, Nikhil Kumar Lakumarapu, Beomseok Lee, Sangha Kim

In this paper, we describe end-to-end simultaneous speech-to-text and text-to-text translation systems submitted to IWSLT2020 online translation challenge. The systems are built by adding wait-k and meta-learning approaches to the Transformer architecture. The systems are evaluated on different latency regimes. The simultaneous text-to-text translation achieved a BLEU score of 26.38 compared to the competition baseline score of 14.17 on the low latency regime (Average latency ≤ 3). The simultaneous speech-to-text system improves the BLEU score by 7.7 points over the competition baseline for the low latency regime (Average Latency ≤ 1000).

Subject: IWSLT.2020