2025.acl-long.254@ACL

Total: 1

#1 Optimizing Decomposition for Optimal Claim Verification [PDF1] [Copy] [Kimi2] [REL]

Authors: Yining Lu, Noah Ziems, Hy Dang, Meng Jiang

Current research on the Decompose-Then-Verify paradigm for evaluating the factuality of long-form text typically treats decomposition and verification in isolation, overlooking their interactions and potential misalignment. We find that existing decomposition policies, typically hand-crafted demonstrations, do not align well with downstream verifiers in terms of atomicity—a novel metric quantifying information density—leading to suboptimal verification results. We formulate finding the optimal decomposition policy for optimal verification as a bilevel optimization problem. To approximate a solution for this strongly NP-hard problem, we propose dynamic decomposition, a reinforcement learning framework that leverages verifier feedback to learn a policy for dynamically decomposing claims to verifier-preferred atomicity. Experimental results show that dynamic decomposition outperforms existing decomposition policies, improving verification confidence by 0.07 and accuracy by 0.12 (on a 0-1 scale) on average across varying verifiers, datasets, and atomcities of input claims.

Subject: ACL.2025 - Long Papers