2025.acl-long.579@ACL

Total: 1

#1 Croppable Knowledge Graph Embedding [PDF2] [Copy] [Kimi3] [REL]

Authors: Yushan Zhu, Wen Zhang, Zhiqiang Liu, Mingyang Chen, Lei Liang, Huajun Chen

Knowledge Graph Embedding (KGE) is a common approach for Knowledge Graphs (KGs) in AI tasks. Embedding dimensions depend on application scenarios. Requiring a new dimension means training a new KGE model from scratch, increasing cost and limiting efficiency and flexibility. In this work, we propose a novel KGE training framework MED. It allows one training to obtain a croppable KGE model for multiple scenarios with different dimensional needs. Sub-models of required dimensions can be directly cropped and used without extra training. In MED, we propose a mutual learning mechanism to improve the low-dimensional sub-models and make high-dimensional sub-models retain the low-dimensional sub-models’ capacity, an evolutionary improvement mechanism to promote the high-dimensional sub-models to master the triple that the low-dimensional sub-models can not, and a dynamic loss weight to adaptively balance the multiple losses. Experiments on 4 KGE models across 4 standard KG completion datasets, 3 real-world scenarios using a large-scale KG, and extending MED to the BERT language model demonstrate its effectiveness, high efficiency, and flexible extensibility.

Subject: ACL.2025 - Long Papers