2025.acl-long.675@ACL

Total: 1

#1 YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering [PDF1] [Copy] [Kimi1] [REL]

Authors: Jennifer D’Souza, Hamed Babaei Giglou, Quentin Münch

Large Language Models (LLMs) drive scientific question-answering on modern search engines, yet their evaluation robustness remains underexplored. We introduce YESciEval, an open-source framework that combines fine-grained rubric-based assessment with reinforcement learning to mitigate optimism bias in LLM evaluators. We release multidisciplinary scienceQ&A datasets, including adversarial variants, with evaluation scores from multiple LLMs. Independent of proprietary models and human feedback, our approach enables scalable, cost-free evaluation. By advancing reliable LLM-as-a-judge models, this work supports AI alignment and fosters robust, transparent evaluation essential for scientific inquiry.

Subject: ACL.2025 - Long Papers