Total: 1
Dyslexia, a common learning disability, requires an early diagnosis. However, current screening tests are very time- and resource-consuming. We present an LSTM that aims to automatically classify dyslexia based on eye movements recorded during natural readingcombined with basic demographic information and linguistic features. The proposed model reaches an AUC of 0.93 and outperforms thestate-of-the-art model by 7 %. We report several ablation studies demonstrating that the fixation features matter the most for classification.