2025.emnlp-industry.165@ACL

Total: 1

#1 ixi-GEN: Efficient Industrial sLLMs through Domain Adaptive Continual Pretraining [PDF] [Copy] [Kimi] [REL]

Authors: Seonwu Kim, Yohan Na, Kihun Kim, Hanhee Cho, Geun Lim, Mintae Kim, Seongik Park, Ki Hyun Kim, Youngsub Han, Byoung-Ki Jeon

The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative despite inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been explored for domain adaptation, its utility in commercial settings remains under-examined. In this study, we validate the effectiveness of a DACP-based recipe across diverse foundation models and service domains, producing DACP-applied sLLMs (ixi-GEN). Through extensive experiments and real-world evaluations, we demonstrate that ixi-GEN models achieve substantial gains in target-domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.

Subject: EMNLP.2025 - Industry Track