2025.emnlp-industry.1@ACL

Total: 1

#1 RAVEN++: Pinpointing Fine-Grained Violations in Advertisement Videos with Active Reinforcement Reasoning [PDF2] [Copy] [Kimi2] [REL]

Authors: Deyi Ji, Yuekui Yang, Liqun Liu, Peng Shu, Haiyang Wu, Shaogang Tang, Xudong Chen, Shaoping Ma, Tianrun Chen, Lanyun Zhu

Advertising (Ad) is a cornerstone of the digital economy, yet the moderation of video advertisements remains a significant challenge due to their complexity and the need for precise violation localization. While recent advancements, such as the RAVEN model, have improved coarse-grained violation detection, critical gaps persist in fine-grained understanding, explainability, and generalization. To address these limitations, we propose RAVEN++, a novel framework that introduces three key innovations: 1) Active Reinforcement Learning (RL), which dynamically adapts training to samples of varying difficulty; 2) Fine-Grained Violation Understanding, achieved through hierarchical reward functions and reasoning distillation; and 3) Progressive Multi-Stage Training, which systematically combines knowledge injection, curriculum-based passive RL, and active RL. Extensive experiments on both public and proprietary datasets, on both offline scenarios and online deployed A/B Testing, demonstrate that RAVEN++ outperforms general-purpose LLMs and specialized models like RAVEN in terms of fine-grained violation understanding, reasoning capabilities, and generalization ability.

Subject: EMNLP.2025 - Industry Track