2025.emnlp-main.1234@ACL

Total: 1

#1 Memory-QA: Answering Recall Questions Based on Multimodal Memories [PDF] [Copy] [Kimi] [REL]

Authors: Hongda Jiang, Xinyuan Zhang, Siddhant Garg, Rishab Arora, Shiun-Zu Kuo, Jiayang Xu, Aaron Colak, Xin Luna Dong

We introduce Memory-QA, a novel real-world task that involves answering recall questions about visual content from previously stored multimodal memories. This task poses unique challenges, including the creation of task-oriented memories, the effective utilization of temporal and location information within memories, and the ability to draw upon multiple memories to answer a recall question. To address these challenges, we propose a comprehensive pipeline, Pensieve, integrating memory-specific augmentation, time- and location-aware multi-signal retrieval, and multi-memory QA fine-tuning. We created a multimodal benchmark to illustrate various real challenges in this task, and show the superior performance of Pensieve over state-of-the-art solutions (up to +14% on QA accuracy).

Subject: EMNLP.2025 - Main