2025.emnlp-main.1501@ACL

Total: 1

#1 How Does DPO Reduce Toxicity? A Mechanistic Neuron-Level Analysis [PDF] [Copy] [Kimi] [REL]

Authors: Yushi Yang, Filip Sondej, Harry Mayne, Andrew Lee, Adam Mahdi

Safety fine-tuning algorithms reduce harmful outputs in language models, yet their mechanisms remain under-explored. Direct Preference Optimization (DPO) is a popular choice of algorithm, but prior explanations—attributing its effects solely to dampened toxic neurons in the MLP layers—are incomplete. In this study, we analyse four language models (Llama-3.1-8B, Gemma-2-2B, Mistral-7B, GPT-2-Medium) and show that toxic neurons only account for 2.5% to 24% of DPO’s effects across models. Instead, DPO induces distributed activation shifts across all MLP neurons to create a net toxicity reduction. We attribute this reduction to four neuron groups—two aligned with reducing toxicity and two promoting anti-toxicity—whose combined effects replicate DPO across models. To further validate this understanding, we develop an activation editing method that mimics DPO through distributed shifts along a toxicity representation. This method outperforms DPO in reducing toxicity while preserving perplexity, without requiring any weight updates. Our work provides a mechanistic understanding of DPO and introduces an efficient, tuning-free alternative for safety fine-tuning.

Subject: EMNLP.2025 - Main