2025.emnlp-main.1510@ACL

Total: 1

#1 Too Helpful, Too Harmless, Too Honest or Just Right? [PDF] [Copy] [Kimi] [REL]

Authors: Gautam Siddharth Kashyap, Mark Dras, Usman Naseem

Large Language Models (LLMs) exhibit strong performance across a wide range of NLP tasks, yet aligning their outputs with the principles of Helpfulness, Harmlessness, and Honesty (HHH) remains a persistent challenge. Existing methods often optimize for individual alignment dimensions in isolation, leading to trade-offs and inconsistent behavior. While Mixture-of-Experts (MoE) architectures offer modularity, they suffer from poorly calibrated routing, limiting their effectiveness in alignment tasks. We propose TrinityX, a modular alignment framework that incorporates a Mixture of Calibrated Experts (MoCaE) within the Transformer architecture. TrinityX leverages separately trained experts for each HHH dimension, integrating their outputs through a calibrated, task-adaptive routing mechanism that combines expert signals into a unified, alignment-aware representation. Extensive experiments on three standard alignment benchmarks—Alpaca (Helpfulness), BeaverTails (Harmlessness), and TruthfulQA (Honesty)—demonstrate that TrinityX outperforms strong baselines, achieving relative improvements of 32.5% in win rate, 33.9% in safety score, and 28.4% in truthfulness. In addition, TrinityX reduces memory usage and inference latency by over 40% compared to prior MoE-based approaches. Ablation studies highlight the importance of calibrated routing, and cross-model evaluations confirm TrinityX’s generalization across diverse LLM backbones. Ourcode is available at: https://github.com/gskgautam/TrinityX

Subject: EMNLP.2025 - Main