Total: 1
This paper investigates to what extent the integration of morphological information can improve subword tokenization and thus also language modeling performance. We focus on Spanish, a language with fusional morphology, where subword segmentation can benefit from linguistic structure. Instead of relying on purely data-driven strategies like Byte Pair Encoding (BPE), we explore a linguistically grounded approach: training a tokenizer on morphologically segmented data. To do so, we develop a semi-supervised segmentation model for Spanish, building gold-standard datasets to guide and evaluate it. We then use this tokenizer to pre-train a masked language model and assess its performance on several downstream tasks. Our results show improvements over a baseline with a standard tokenizer, supporting our hypothesis that morphology-aware tokenization offers a viable and principled alternative for improving language modeling.