2025.emnlp-main.1613@ACL

Total: 1

#1 When Big Models Train Small Ones: Label-Free Model Parity Alignment for Efficient Visual Question Answering using Small VLMs [PDF] [Copy] [Kimi] [REL]

Authors: Abhirama Subramanyam Penamakuri, Navlika Singh, Piyush Arora, Anand Mishra

Large Vision-Language Models (L-VLMs) have demonstrated remarkable performance in various vision and language tasks, including Visual Question Answering (VQA). However, their high computational cost makes them impractical for resource-constrained settings and inference-heavy applications. In contrast, Small Vision-Language Models (S-VLMs) offer efficiency but suffer from a significant performance gap compared to their larger counterparts. In this work, we introduce the Model Parity Aligner (MPA), a novel framework designed to systematically improve S-VLMs by leveraging unlabeled images and effective knowledge transfer from L-VLMs. Instead of traditional knowledge distillation methods that rely on labeled training data, MPA employs a strategic parity-based approach that precisely identifies the knowledge disparities between S-VLMs and L-VLMs, and optimizes training by targeting only these disparities. We conduct extensive experiments on four diverse VQA benchmarks, namely TextVQA, ST-VQA, ChartQA, and OKVQA, each of which required specialized reasoning capabilities such as text recognition, chart interpretation, and commonsense and factual understanding. Our results demonstrate that MPA consistently enhances the performance of S-VLM on all benchmarks, reducing the performance gap while maintaining computational efficiency. We shall make our code and MPA-aligned models publicly available upon acceptance of this work.

Subject: EMNLP.2025 - Main