Total: 1
The development of Emotional Support Conversation (ESC) systems is critical for delivering mental health support tailored to the needs of help-seekers. Recent advances in large language models (LLMs) have contributed to progress in this domain, while most existing studies focus on generating responses directly and overlook the integration of domain-specific reasoning and expert interaction.Therefore, in this paper, we propose a training-free Multi-Agent collaboration framework for ESC (MultiAgentESC).The framework is designed to emulate the human-like process of providing emotional support through three stages: dialogue analysis, strategy deliberation, and response generation.At each stage, a multi-agent system is employed to iteratively enhance information understanding and reasoning, simulating real-world decision-making processes by incorporating diverse interactions among these expert agents.Additionally, we introduce a novel response-centered approach to handle the one-to-many problem on strategy selection, where multiple valid strategies are initially employed to generate diverse responses, followed by the selection of the optimal response through multi-agent collaboration.Experiments on the ESConv dataset reveal that our proposed framework excels at providing emotional support as well as diversifying support strategy selection.