Total: 1
We present PricingLogic, the first benchmarkthat probes whether Large Language Mod-els (LLMs) can reliably automate tourism-booking prices when multiple, overlapping farerules apply. Travel agencies are eager to of-fload this error-prone task to AI systems; how-ever, deploying LLMs without verified reliabil-ity could result in significant financial lossesand erode customer trust. PricingLogic com-prises 300 natural-language questions based onbooking requests derived from 42 real-worldpricing policies, spanning two levels of diffi-culty: (i) basic customer-type pricing and (ii)bundled-tour calculations involving interactingdiscounts. Evaluations of a line of LLMs re-veal a steep performance drop on the harder tier,exposing systematic failures in rule interpreta-tion and arithmetic reasoning. These resultshighlight that, despite their general capabilities,today’s LLMs remain unreliable for revenue-critical applications without further safeguardsor domain adaptation. Our code and dataset areavaliable in https://github.com/EIT-NLP/PricingLogic.