Total: 1
Recent large pretrained models such as LLMs (e.g., GPT series) and VLAs (e.g., OpenVLA) have achieved notable progress on multimodal tasks, yet they are built upon a multi-input single-output (MISO) paradigm. We show that this paradigm fundamentally limits performance in multi-input multi-output (MIMO) scenarios, where parallel task execution is required. In MISO architectures, tasks compete for a shared output channel, creating mutual exclusion effects that cause unbalanced optimization and degraded performance. To address this gap, we introduce MIMO-VLA (VLASCD), a unified training framework that enables concurrent multi-task outputs, exemplified by simultaneous dialogue generation and decision-making. Inspired by human cognition, MIMO-VLA eliminates interference between tasks and supports efficient parallel processing. Experiments on the CARLA autonomous driving platform demonstrate that MIMO-VLA substantially outperforms state-of-the-art MISO-based LLMs, reinforcement learning models, and VLAs in MIMO settings, establishing a new direction for multimodal and multitask learning.