Total: 1
In the era of evaluating large language models (LLMs), data contamination has become an increasingly prominent concern. To address this risk, LLM benchmarking has evolved from a *static* to a *dynamic* paradigm. In this work, we conduct an in-depth analysis of existing *static* and *dynamic* benchmarks for evaluating LLMs. We first examine methods that enhance *static* benchmarks and identify their inherent limitations. We then highlight a critical gap—the lack of standardized criteria for evaluating *dynamic* benchmarks. Based on this observation, we propose a series of optimal design principles for *dynamic* benchmarking and analyze the limitations of existing *dynamic* benchmarks.This survey provides a concise yet comprehensive overview of recent advancements in data contamination research, offering valuable insights and a clear guide for future research efforts. We maintain a GitHub repository to continuously collect both static and dynamic benchmarking methods for LLMs. The repository can be found at this link.