2025.emnlp-main.558@ACL

Total: 1

#1 Long-Form Information Alignment Evaluation Beyond Atomic Facts [PDF] [Copy] [Kimi] [REL]

Authors: Danna Zheng, Mirella Lapata, Jeff Z. Pan

Information alignment evaluators are vital for various NLG evaluation tasks and trustworthy LLM deployment, reducing hallucinations and enhancing user trust. Current fine-grained methods, like FactScore, verify facts individually but neglect inter-fact dependencies, enabling subtle vulnerabilities.In this work, we introduce MontageLie, a challenging benchmark that constructs deceptive narratives by “montaging” truthful statements without introducing explicit hallucinations.We demonstrate that both coarse-grained LLM-based evaluators and current fine-grained frameworks are susceptible to this attack, with AUC-ROC scores falling below 65%.To enable more robust fine-grained evaluation, we propose DoveScore, a novel framework that jointly verifies factual accuracy and event-order consistency. By modeling inter-fact relationships, DoveScore outperforms existing fine-grained methods by over 8%, providing a more robust solution for long-form text alignment evaluation. Our code and datasets are available at https://github.com/dannalily/DoveScore.

Subject: EMNLP.2025 - Main