2025.emnlp-main.59@ACL

Total: 1

#1 VC4VG: Optimizing Video Captions for Text-to-Video Generation [PDF] [Copy] [Kimi] [REL]

Authors: Yang Du, Zhuoran Lin, Kaiqiang Song, Biao Wang, Zhicheng Zheng, Tiezheng Ge, Bo Zheng, Qin Jin

Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models. We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements. Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code (https://github.com/qyr0403/VC4VG) to support further research.

Subject: EMNLP.2025 - Main