Total: 1
Translationese refers to linguistic properties that usually occur in translated texts. Previous works study translationese by framing it as a binary classification between original texts and translated texts. In this paper, we argue that translationese should be graded instead of binary and propose the first measure for translationese—the translationese-index (T-index), computed from the likelihood ratios of two contrastively fine-tuned language models (LMs). We use synthesized translations and translations in the wild to evaluate T-index’s generalizability in cross-domain settings and its validity against human judgments.Our results show that T-index can generalize to unseen genres, authors, and language pairs. Moreover, T-index computed using two 0.5B LMs fine-tuned on only 1-5k pairs of synthetic data can effectively capture translationese, as demonstrated by alignment with human pointwise ratings and pairwise judgments.Additionally, the correlation between T-index and existing machine translation (MT) quality estimation (QE) metrics such as BLEU and COMET is low, suggesting that T-index is not covered by these metrics andcan serve as a complementary metric in MT QE.