Total: 1
Recently, the rapid development of multilingual social media platforms (SNS) exacerbates new challenges in SNS content anomaly detection due to data islands and linguistic imbalance. While federated learning (FL) and parameter-efficient fine-tuning (PEFT) offer potential solutions in most cases, when every client is multilingual, existing solutions struggle with multilingual heterogeneity: 1) entangled language-specific knowledge during aggregation, 2) noise from minority languages, and 3) unstable cross-platform collaboration. Based on the asymmetric nature of LoRA, we propose MuLA-F, a multilingual Federated LoRA introducing SVD-based language-specific disentanglement of LoRA blocks and a local orthogonal tuning strategy. Evaluations across three SNS content anomaly detection tasks demonstrate MuLA-F’s superiority in multilingual performance while reducing multilingual knowledge conflicts and communication rounds.