Total: 1
Mixture-of-Experts (MoE) layers scale transformers by routing tokens to a sparse subset of feed-forward experts. Token-level routing, however, assigns an entire semantic spectrum to each expert, creating capacity bottlenecks, load-balancing pathologies, and limited specialisation. We introduce SliceMoE, an architecture that routes contiguous slices of a token’s hidden vector. A d-dimensional embedding is partitioned into S slices, and for each slice, a lightweight shared router predicts the top-k experts. Experts operate on their assigned slices independently, and outputs are re-assembled, maintaining per-token FLOP efficiency. Because slices from different tokens interleave within an expert, utilisation is naturally smoother. We propose a slice-level capacity loss, cross-slice dropout, and efficient fused batched-GEMM kernels. Experiments on WikiText-103 language modelling, WMT En–De translation, and three text-classification datasets show SliceMoE attains up to 1.7x faster inference than dense baselines, 12–18% lower perplexity than parameter-matched token-MoE, and improved expert balance, with interpretable expertise over syntactic versus semantic sub-spaces.