Total: 1
The integration of knowledge graphs (KGs) with large language models (LLMs) offers significant potential to enhance the retrieval stage in retrieval-augmented generation (RAG) systems. In this study, we propose KG-CQR, a novel framework for Contextual Query Retrieval (CQR) that enhances the retrieval phase by enriching complex input queries with contextual representations derived from a corpus-centric KG. Unlike existing methods that primarily address corpus-level context loss, KG-CQR focuses on query enrichment through structured relation representations, extracting and completing relevant KG subgraphs to generate semantically rich query contexts. Comprising subgraph extraction, completion, and contextual generation modules, KG-CQR operates as a model-agnostic pipeline, ensuring scalability across LLMs of varying sizes without additional training. Experimental results on the RAGBench and MultiHop-RAG datasets demonstrate that KG-CQR outperforms strong baselines, achieving improvements of up to 4–6% in mAP and approximately 2–3% in Recall@25. Furthermore, evaluations on challenging RAG tasks such as multi-hop question answering show that, by incorporating KG-CQR, the performance outperforms the existing baseline in terms of retrieval effectiveness.