2025.emnlp-main.883@ACL

Total: 1

#1 SAFE: Schema-Driven Approximate Distance Join for Efficient Knowledge Graph Querying [PDF1] [Copy] [Kimi1] [REL]

Authors: Sangoh Lee, Sungho Park, Wook-Shin Han

To reduce hallucinations in large language models (LLMs), researchers are increasingly investigating reasoning methods that integrate LLMs with external knowledge graphs (KGs). Existing approaches either map an LLM-generated query graph onto the KG or let the LLM traverse the entire graph; the former is fragile because noisy query graphs derail retrieval, whereas the latter is inefficient due to entity-level reasoning over large graphs. In order to tackle these problems, we propose **SAFE** (**S**chema-Driven **A**pproximate Distance Join **F**or **E**fficient Knowledge Graph Querying), a framework that leverages schema graphs for robust query graph generation and efficient KG retrieval. SAFE introduces two key ideas: (1) an Approximate Distance Join (ADJ) algorithm that refines LLM-generated pseudo query graphs by flexibly aligning them with the KG’s structure; and (2) exploiting a compact schema graph to perform ADJ efficiently, reducing overhead and improving retrieval accuracy. Extensive experiments on WebQSP, CWQ and GrailQA demonstrate that SAFE outperforms state-of-the-art methods in both accuracy and efficiency, providing a robust and scalable solution to overcome the inherent limitations of LLM-based knowledge retrieval.

Subject: EMNLP.2025 - Main