Total: 1
Effectively resolving phonological ambiguities is crucial for robust natural language processing, as these ambiguities are pervasive in tasks ranging from speech-to-text, spelling correction, to offensive language detection. However, current Large Language Models (LLMs) frequently struggle to resolve such ambiguities.To address this challenge, we present a framework to enhances LLMs’ phonological capability through a multiple-stage training approach. Our method begins with supervised fine-tuning on well-constructed datasets, including three subtask datasets designed to enhance the model’s foundational phonological knowledge, along with a synthetic dataset of step-by-step reasoning chains. Following this, we apply reinforcement learning to incentivize and stabilize its reasoning.Results show that our framework enables the base model to achieve relatively comparable performance to a much larger model. Our ablation studies reveal that subtask datasets and the synthetic dataset can simultaneously impact as complementary modular enhancers to strengthen LLMs’ integrated application.