Total: 1
Recent work has suggested that overlap –whether a given lemma or feature set is attested independently in train – drives model performance on morphological inflection tasks. The impact of lemma overlap, however, is debated, with recent work reporting accuracy drops from 0% to 30% between seen and unseen test lemmas. In this paper, we introduce a novel splitting algorithm designed to investigate predictors of accuracy on seen and unseen lemmas. We find only an 11% average drop from seen to unseen test lemmas, but show that the number of lemmas in train has a much stronger effect on accuracy on unseen than seen lemmas. We also show that the previously reported 30% drop is inflated due to the introduction of a near-30% drop in the number of training lemmas from the original splits to their novel splits.