2025.findings-acl.211@ACL

Total: 1

#1 Long-form Hallucination Detection with Self-elicitation [PDF2] [Copy] [Kimi] [REL]

Authors: Zihang Liu, Jiawei Guo, Hao Zhang, Hongyang Chen, Jiajun Bu, Haishuai Wang

While Large Language Models (LLMs) have exhibited impressive performance in generating long-form content, they frequently present a hazard of producing factual inaccuracies or hallucinations. An effective strategy to mitigate this hazard is to leverage off-the-shelf LLMs to detect hallucinations after the generation. The primary challenge resides in the comprehensive elicitation of the intrinsic knowledge acquired during their pre-training phase. However, existing methods that employ multi-step reasoning chains predominantly fall short of addressing this issue. Moreover, since existing methods for hallucination detection tend to decompose text into isolated statements, they are unable to understand the contextual semantic relations in long-form content. In this paper, we study a novel concept, self-elicitation, to leverage self-generated thoughts derived from prior statements as catalysts to elicit the expression of intrinsic knowledge and understand contextual semantics. We present a framework, SelfElicit, to integrate self-elicitation with graph structures to effectively organize the elicited knowledge and facilitate factual evaluations. Extensive experiments on five datasets in various domains demonstrate the effectiveness of self-elicitation and the superiority of our proposed method.

Subject: ACL.2025 - Findings