Total: 1
We introduce semantic topology, a novel framework for discourse analysis that leverages Circuit Topology to quantify the semantic arrangement of sentences in a text. By mapping recurring themes as series, parallel, or cross relationships, we identify statistical differences in communication patterns in long-form true and fake news. Our analysis of large-scale news datasets reveals that true news are more likely to exhibit more complex topological structures, with greater thematic interleaving and long-range coherence, whereas fake news favor simpler, more linear narratives. These findings suggest that topological features capture stylistic distinctions beyond traditional linguistic cues, offering new insights for discourse modeling.