2025.findings-acl.599@ACL

Total: 1

#1 You need to MIMIC to get FAME: Solving Meeting Transcript Scarcity with Multi-Agent Conversations [PDF] [Copy] [Kimi] [REL]

Authors: Frederic Kirstein, Muneeb Khan, Jan Philip Wahle, Terry Ruas, Bela Gipp

Meeting summarization suffers from limited high-quality data, mainly due to privacy restrictions and expensive collection processes. We address this gap with FAME, a dataset of 500 meetings in English and 300 in German produced by MIMIC, our new multi-agent meeting synthesis framework that generates meeting transcripts on a given knowledge source by defining psychologically grounded participant profiles, outlining the conversation, and orchestrating a large language model (LLM) debate. A modular post-processing step refines these outputs, mitigating potential repetitiveness and overly formal tones, ensuring coherent, credible dialogues at scale. We also propose a psychologically grounded evaluation framework assessing naturalness, social behavior authenticity, and transcript difficulties. Human assessments show that FAME approximates real-meeting spontaneity (4.5/5 in naturalness), preserves speaker-centric challenges (3/5 in spoken language), and introduces richer information-oriented difficulty (4/5 points in difficulty). These findings show FAME is a good and scalable proxy for real-world meeting conditions. It enables new test scenarios for meeting summarization research and other conversation-centric applications in tasks requiring conversation data or simulating social scenarios under behavioral constraints.

Subject: ACL.2025 - Findings