2025.findings-acl.874@ACL

Total: 1

#1 Low-Rank Interconnected Adaptation across Layers [PDF] [Copy] [Kimi] [REL]

Authors: Yibo Zhong, Jinman Zhao, Yao Zhou

Low-rank adaptation (LoRA) is a widely used parameter-efficient fine-tuning (PEFT) method that learns weight updates 𝛥 W = AB for pretrained weights W through low-rank adapters A and B. While LoRA ensures hardware efficiency, its low-rank weight updates limit adaptation performance. In this paper, we propose low-rank interconnected adaptation across layers (Lily), a novel PEFT method that introduces an interconnected framework with locally shared A and globally shared B experts. This structure eliminates redundant per-layer AB pairs, enabling higher-rank 𝛥 W with equal or fewer parameters. To enhance expressiveness, we use data-dependent routers to determine A-B interconnections, preventing B experts from converging to the same behavior and improving representational power across domains. Experiments across modalities, architectures, and model sizes demonstrate Lily’s superior performance and efficiency.

Subject: ACL.2025 - Findings