Total: 1
This paper proposes Complete Textual Concept Bottleneck Model (CT-CBM), a novel TCBM generator building concept labels in a fully unsupervised manner using a small language model, eliminating both the need for predefined human labeled concepts and LLM annotations. CT-CBM iteratively targets and adds important and identifiable concepts in the bottleneck layer to create a complete concept basis. CT-CBM achieves striking results against competitors in terms of concept basis completeness and concept detection accuracy, offering a promising solution to reliably enhance interpretability of NLP classifiers.