Total: 1
Aligning large language models (LLMs) with human preferences relies heavily on high-quality reward models. However, existing approaches struggle with two critical challenges: noisy preference labels and the varying importance of preference samples. We introduce DORM, a method that enhances reward modeling by learning to dynamically weigh preference data.DORM initializes data importance using a combination of model uncertainty and prediction disagreement, then iteratively refines them via bilevel optimization to maximize validation performance. Using only 50k samples, DORM trains a 12B reward model that achieves 90.5% accuracy on RewardBench, matching the performance of models trained on significantly larger datasets. Furthermore, downstream alignment tasks show that fine-tuned LLMs with DORM achieve a 61.2% win rate against baseline methods, highlighting its data efficiency and generalizability.