2025.findings-emnlp.1370@ACL

Total: 1

#1 RAC: Efficient LLM Factuality Correction with Retrieval Augmentation [PDF] [Copy] [Kimi] [REL]

Authors: Changmao Li, Jeffrey Flanigan

Large Language Models (LLMs) exhibit impressive results across a wide range of natural language processing (NLP) tasks, yet they can often produce factually incorrect outputs. This paper introduces a simple but effective low-latency post-correction method, Retrieval Augmented Correction (RAC), aimed at enhancing the factual performance of LLMs without requiring additional fine-tuning. Our method is general and can be used with any instruction-tuned LLM, and has greatly reduced latency compared to prior approaches. RAC decomposes the LLM’s output into atomic facts and applies a fine-grained verification and correction process with retrieved content to verify and correct the LLM-generated output. Our extensive experiments show that RAC yields up to 30% improvements over the LLM baselines across three popular factuality evaluation datasets, validating its efficacy and robustness with and without the integration of Retrieval-Augmented Generation (RAG) across different LLMs. Notably, our method has reduced latency up to 40x and reduced token consumption up to 7x compared to previous state-of-the-art post-correction approaches with similar or better performance.

Subject: EMNLP.2025 - Findings