Total: 1
In Embedding Based Retrieval (EBR), Approximate Nearest Neighbor (ANN) algorithms are widely adopted for efficient large-scale search. However, recent studies reveal a query out-of-distribution (OOD) issue, where query and base embeddings follow mismatched distributions, significantly degrading ANN performance. In this work, we empirically verify the generality of this phenomenon and provide a quantitative analysis. To mitigate the distributional gap, we introduce a distribution regularizer into the encoder training objective, encouraging alignment between query and base embeddings. Extensive experiments across multiple datasets, encoders, and ANN indices show that our method consistently improves retrieval performance.