2025.findings-emnlp.35@ACL

Total: 1

#1 R-LoRA: Randomized Multi-Head LoRA for Efficient Multi-task Learning [PDF] [Copy] [Kimi2] [REL]

Authors: Jinda Liu, Yi Chang, Yuan Wu

Fine-tuning large language models (LLMs) is computationally expensive, and Low-Rank Adaptation (LoRA) provides a cost-effective solution by approximating weight updates through low-rank matrices. In real-world scenarios, LLMs are fine-tuned on data from multiple domains to perform tasks across various fields, embodying multi-task learning (MTL). LoRA often underperforms in such complex scenarios. To enhance LoRA’s capability in multi-task learning, we propose R-LoRA, which incorporates Multi-Head Randomization. Multi-Head Randomization diversifies the head matrices through Multi-Head Dropout and Multi-Head Random Initialization, enabling more efficient learning of task-specific features while maintaining shared knowledge representation. Our approach not only improves performance in MTL but also reduces GPU memory usage and training time. Experiments show that R-LoRA’s gains stem from increased diversity in the head matrices, demonstrating its effectiveness for multi-task learning. The code is open-sourced.

Subject: EMNLP.2025 - Findings