2025.findings-emnlp.400@ACL

Total: 1

#1 Rotate, Clip, and Partition: Towards W2A4KV4 Quantization by Integrating Rotation and Learnable Non-uniform Quantizer [PDF] [Copy] [Kimi] [REL]

Authors: Euntae Choi, Sumin Song, Woosang Lim, Sungjoo Yoo

We propose Rotate, Clip, and Partition (RCP), a Quantization-Aware Training (QAT) approach that first realizes extreme compression of LLMs with W2A4KV4 (2-bit weight, 4-bit activation, and 4-bit KV-cache) configuration. RCP integrates recent rotation techniques with a novel non-uniform weight quantizer design by theoretically and empirically analyzing the impact of rotation on the non-uniformity of weight distribution. Our weight quantizer, Learnable Direct Partitioning (LDP), introduces learnable parameters to directly learn non-uniform intervals jointly with LLM weights. We also present a GPU kernel supporting GEMV on non-uniform W2A4 as proof of concept. Experiments show that RCP can compress LLaMA-2-7B to W2A4KV4 with a loss of only 2.84 WikiText2 PPL and 5.29 times reduced memory footprint. Furthermore, RCP can quantize challenging mobile-targeted LLaMA-3.2 models and domain-specific WizardCoder-7B and MetaMath-7B with no critical problems such as convergence failure and repetition. Code is available at https://github.com/songsm921/RCP.

Subject: EMNLP.2025 - Findings