2025.findings-emnlp.668@ACL

Total: 1

#1 Speculative Decoding for Multi-Sample Inference [PDF] [Copy] [Kimi1] [REL]

Authors: Yiwei Li, Jiayi Shi, Shaoxiong Feng, Peiwen Yuan, Xinglin Wang, Yueqi Zhang, Ji Zhang, Chuyi Tan, Boyuan Pan, Yao Hu, Kan Li

We propose a novel speculative decoding method tailored for multi-sample reasoning scenarios, such as self-consistency and Best-of-N sampling. Our method exploits the intrinsic consensus of parallel generation paths to synthesize high-quality draft tokens without requiring auxiliary models or external databases. By dynamically analyzing structural patterns across parallel reasoning paths through a probabilistic aggregation mechanism, it identifies consensus token sequences that align with the decoding distribution. Evaluations on mathematical reasoning and code generation benchmarks demonstrate a substantial improvement in draft acceptance rates over baselines, while reducing the latency in draft token construction. This work establishes a paradigm shift for efficient multi-sample inference, enabling seamless integration of speculative decoding with sampling-based reasoning techniques.

Subject: EMNLP.2025 - Findings